

RHSEG User's Manual:

Including the Core HSEG
Open Source Release,
HSEGExtract,
HSEGReader and
HSEGViewer

Version 1.46
October 6, 2009

Copyright © 2006 United States Government as represented by the Administrator of the
National Aeronautics and Space Administration. No copyright is claimed in the United
States under Title 17, U.S. Code. All Other Rights Reserved.

RHSEG User’s Manual Version 1.46

ii

(Reserved for licensing information)

RHSEG User’s Manual Version 1.46

iii

 Table of Contents
Overview .. 1
Documentation Conventions .. 1
Additional Sources of Information .. 1

Chapter 1: What are HSEG, RHSEG, HSEGExtract, HSEGReader and
HSEGViewer? ... 2

Overview .. 2
What is Image Segmentation? .. 2
What is a Segmentation Hierarchy? ... 2
What is HSEG? .. 3
What is RHSEG? ... 4
What is HSEGExtract? ... 5
What is HSEGReader? ... 6
What is HSEGViewer? .. 6
References .. 6

Chapter 2: Installing the Programs... 8

Overview .. 8
Core HSEG Open Source Release Version .. 8
RHSEG Demonstration Version .. 11
RHSEG Licensed Serial Version ... 11
RHSEG Licensed Parallel Version .. 15
HSEGExtract, HSEGReader, and HSEGViewer ... 15
Advice on Installing GDAL, gtkmm and pthreads .. 15

Chapter 3: Running the Programs .. 17

Overview .. 17
Running RHSEG .. 17
Running HSEG .. 19
Running HSEGExtract ... 20
Running HSEGReader ... 22
Running HSEGViewer ... 23

Chapter 4: Guide to HSEG/RHSEG Parameters and Parameter Settings 26

Overview .. 26
HSEG/RHSEG Program Parameters.. 26
Guidance on HSEG/RHSEG Program Parameter Settings .. 49
References .. 50

Chapter 5: HSEGViewer Tutorial .. 51

Overview .. 51
HSEGViewer Tutorial .. 51
Notes on viewing 3-D data with HSEGViewer ... 56

RHSEG User’s Manual Version 1.46

1

Overview
The HSEG algorithm is an image segmentation approach based on iterative hierarchical
step-wise region growing. The HSEG algorithm augments the usual region growing
segmentation approach by (i) providing for the optional merging of non-adjacent regions
(effectively classifying connected region objects into spatially disjoint region classes),
and (ii) providing approaches for selecting region growing iterations from which
segmentation results are saved to form a segmentation hierarchy. RHSEG is a fast,
recursive approximation of HSEG. RHSEG is implemented in a software package that
can optionally utilize parallel computing for increased processing speed. With a certain
setting of parameters, RHSEG becomes identical to HSEG.

HSEGExtract is a program for extracting certain segmentation features (e.g., region
mean, region standard deviation) from selected levels of the segmentation hierarchies
produced by HSEG or RHSEG.

HSEGReader is a user interactive program for examining the region class and region
object feature values of the regions in the segmentation hierarchies produced by HSEG or
RHSEG.

HSEGViewer is a user interactive program for visualizing, manipulating and interacting
with the segmentation hierarchies produced by HSEG or RHSEG.

This manual provides detailed instructions on how to install and use HSEG, RHSEG,
HSEGExtract, HSEGReader and HSEGViewer.

Documentation Conventions
The following conventions are followed within this document:

 Bold text signifies command line text.

 italicized text signifies variable names and program parameter names.
 Unless otherwise specified, “clicking” the mouse button means pressing the left

mouse button.

Additional Sources of Information
The following web sites can be consulted for additional and updated information:

 http://ipp.gsfc.nasa.gov/RHSEG/

 http://cisto.gsfc.nasa.gov/TILTON/

http://ipp.gsfc.nasa.gov/RHSEG/�
http://cisto.gsfc.nasa.gov/TILTON/�

RHSEG User’s Manual Version 1.46

2

Chapter 1: What are HSEG, RHSEG, HSEGExtract,
HSEGReader and HSEGViewer?

Overview
The HSEG algorithm is an image segmentation approach based on region growing. The
HSEG algorithm augments the usual region growing segmentation approach by (i)
providing for the optional merging of non-adjacent regions (effectively classifying
connected region objects into spatially disjoint region classes), and (ii) providing
approaches for selecting region growing iterations from which segmentation results are
saved to form a segmentation hierarchy. RHSEG is a fast, recursive approximation of
HSEG. RHSEG is implemented in a software package that can optionally utilize parallel
computing for increased processing speed. With a certain setting of parameters, RHSEG
becomes identical to HSEG.

HSEGExtract is a program for extracting certain segmentation features (e.g., region
mean, region standard deviation) from selected levels of the segmentation hierarchies
produced by HSEG or RHSEG.

HSEGReader is a user interactive program for examining the region class and region
object feature values of the regions in the segmentation hierarchies produced by HSEG or
RHSEG.

HSEGViewer is a user interactive program for visualizing, manipulating and interacting
with the segmentation hierarchies produced by HSEG or RHSEG.

Since RHSEG is an approximation of HSEG, a basic understanding of image
segmentation, segmentation hierarchies, and the HSEG approach for generating
segmentation hierarchies is required before RHSEG can be described.

What is Image Segmentation?
Image segmentation is the partitioning of an image into related sections or regions. For
remotely sensed images of the earth, an example of an image segmentation would be a
labeled map that divides the image into areas covered by distinct earth surface covers
such as water, snow, types of natural vegetation, types of rock formations, types of
agricultural crops and types of other man created development. In unsupervised image
segmentation, the labeled map may consist of generic labels such as region 1, region 2,
etc., which may be converted to meaningful labels by a post-segmentation analysis.

What is a Segmentation Hierarchy?
A segmentation hierarchy is a set of several image segmentations of the same image at
different levels of detail in which the segmentations at coarser levels of detail can be
produced from simple merges of regions at finer levels of detail. This is useful for
applications that require different levels of image segmentation detail depending on the
characteristics of the particular image objects segmented. A unique feature of a
segmentation hierarchy that distinguishes it from most other multilevel representations is

RHSEG User’s Manual Version 1.46

3

that the segment or region boundaries are maintained at the full image spatial resolution
for all levels of the segmentation hierarchy.

In a segmentation hierarchy, an object of interest may be represented by multiple image
segments in finer levels of detail in the segmentation hierarchy, and may be merged into a
surrounding region at coarser levels of detail in the segmentation hierarchy. If the
segmentation hierarchy has sufficient resolution, the object of interest will be represented
as a single region segment at some intermediate level of segmentation detail. The
segmentation hierarchy may be analyzed to identify the hierarchical level at which the
object of interest is represented by a single region segment. The object may then be
potentially identified through its spectral and spatial characteristics. Additional clues for
object identification may be obtained from the behavior of the image segmentations at the
hierarchical segmentation levels above and below the level(s) at which the object of
interest is represented by a single region.

What is HSEG?
Hierarchical Step-Wise Optimization (HSWO) is a form of region growing segmentation
that directly forms a segmentation hierarchy [1]. HSWO is an iterative process, in which
the iterations consist of finding the best segmentation with one region less than the
current segmentation. The HSWO approach can be summarized as follows:

1. Initialize the segmentation by assigning each image pixel a region label. If a pre-
segmentation is provided, label each image pixel according to the pre-segmentation.
Otherwise, label each image pixel as a separate region.

2. Calculate the dissimilarity criterion value between all pairs of spatially adjacent
regions, find the pair of spatially adjacent regions with the smallest dissimilarity
criterion value, and merge that pair of regions.

3. Stop if no more merges are required. Otherwise, return to step 2.

HSWO naturally produces a segmentation hierarchy consisting of the entire sequence of
segmentations from initialization down to the final trivial one region segmentation (if
allowed to proceed that far). For practical applications, however, a subset of
segmentations needs to be selected out from this exhaustive segmentation hierarchy.

HSEG adds to HSWO approaches for selecting such a subset of segmentations. By
default, the subset is selected that minimizes the number of hierarchical levels utilized to
guarantee that each region is involved in no more than one merge from one hierarchical
level to the next. The user may instead choose to explicitly a set of iterations based on the
number of regions or merge thresholds at those iterations. Further, since segmentation
results with a large number of regions are usually not interesting, the hierarchical
segmentation results are not output until the number of regions reaches a user specified
value, chk_nregions.

HSEG also optionally interjects between HSWO iterations merges of spatially non-
adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold
derived from the previous HSWO iteration [2]. The relative importance of region
growing and spectral clustering merges is controlled by the parameter spclust_wght,
which can vary from 0.0 to 1.0. When spclust_wght = 0.0, only merges between spatially

RHSEG User’s Manual Version 1.46

4

adjacent regions are allowed (no spectral clustering). With spclust_wght = 1.0, merges
between spatially adjacent and spatially non-adjacent regions are given equal priority. For
0.0 < spclust_wght < 1.0, spatially adjacent merges are given priority over spatially non-
adjacent merges by a factor of 1.0/spclust_wght. Thus for spclust_wght > 0.0, spatially
connected region objects may be grouped or classified into spatially disjoint region
classes.

While the addition of constrained spectral clustering significantly reduces the number of
regions required to characterize an image, especially for larger highly varied images, it
also significantly increases HSEG’s computational requirements. This increase in
computational requirements is counteracted by RHSEG, a computationally efficient
recursive approximation of HSEG.

What is RHSEG?
RHSEG is a recursive, divide-and-conquer, approximation of HSEG. Following [3] and
[4], it can be described for ND spatial dimension image data as:

1. Given an input image X, specify the number of levels of recursion (rnb_levels)
required and pad the input image, if necessary, so that for each spatial dimension the
image can be evenly divided by 2(rnb_levels-1). (A good value for rnb_levels results in
an image section at level = rnb_levels consisting of roughly 1000 to 4000 pixels.) Set
level = 1.

2. Call rhseg(level,X).
3. Execute the HSEG algorithm on the image X using as a pre-segmentation the

segmentation output by the call to rhseg() in step 2.

where rhseg(level,X) is as follows:

2.1. If level = rnb_levels, go to step 2.3. Otherwise, divide the image data into DN2 equal
subsections and call rhseg(level+1, DNX 2) for each image section (represented as

DNX 2).

2.2. After all DN2 calls to rhseg() from step 2.1 complete processing, reassemble the
image segmentation results.

2.3. If level < rnb_levels, initialize the segmentation with the reassembled segmentation
results from step 2.2. Otherwise, initialize the segmentation with one pixel per
region. Execute the HSEG algorithm on the image X with the following
modification: Terminate the algorithm when the number of regions reaches the
preset value min_nregions.

Note that rnb_levels and min_nregions are user specified parameters (with default values
available).

Under a number of circumstances, the segmentations produced by the RHSEG algorithm
exhibit processing window artifacts. These artifacts are region boundaries that are along
the processing window seams, even though the image pixels across the seams are very
similar. Processing window artifacts are usually minor, but can be more noticeable,
depending on the image. They tend to be more noticeable and prevalent in larger images.

RHSEG User’s Manual Version 1.46

5

However, the processing window artifacts can be completely eliminated by adding a 4th
step to the definition of rhseg(level,X) given above (following [5] and [6]):

2.4. If level = rnb_levels, exit. Otherwise do the following (and then exit):

a. For each region, identify other regions that may contain pixels that are more
similar to it than the region that they are currently in. These regions are placed in
a candidate_region_label set for each region. This is done by:

i. scanning the processing window seam between sections processed at the
next deeper level of recursion for pixels that are more similar (by a factor of
seam_threshold_factor) to the region existing across the processing window
seam.

ii. for, spclust_wght > 0.0, identifying regions that have a dissimilarity
between each other less than region_threshold_factor*max_threshold).

b. For each region with a non-empty candidate_region_label set, identify pixels in
the region that are more similar by a factor of split_pixels_factor to regions in
the candidate_region_label set than to the region they are currently in. If
spclust_wght = 1.0, simply switch the region assignment of these pixels to the
more similar region. Otherwise, split these regions out of their current regions
and remerge them through a restricted version of HSEG in which region
growing is performed with these split-out pixels and merging is restricted to
neighboring regions and regions in the candidate_region_label set from which
the pixel came from.

Processing window artifact elimination as introduced here not only eliminates the
processing window artifacts, but does so with minimal computational overhead. The
computational overhead is no more than doubles for a wide range of image sizes [6]. The
program defaults for the parameters values seam_threshold_factor = 1.3,
split_pixels_factor = 1.4 work well for a wide range of images. (The default value for
region_threshold_factor is 0.0, as this aspect of the processing window artifact
elimination procedure is usually unnecessary.)

What is HSEGExtract?
HSEGExtract is a program written in C++ for extracting certain segmentation features
from selected levels of the segmentation hierarchies produced by HSEG or RHSEG.

With HSEGExtract, an analyst can select a particular hierarchical segmentation level and
then output region class or region objects features from the selected hierarchical level in
the form of ENVI format images. The following region class or region objects features
may be output: Region labels, region number of pixels, region mean, region standard
deviation and region boundary pixel to number of pixels ratio.

RHSEG User’s Manual Version 1.46

6

What is HSEGReader?
HSEGReader is a graphical user interactive (GUI) program written in C++ (utilizing the
gtkmm GUI library, see http://www.gtkmm.org/) that enables an analyst to examine the
feature values of the region classes and region objects contained in the hierarchical
segmentation results produced by HSEG or RHSEG.

With HSEGReader, an analyst can select a particular hierarchical segmentation level and
then view the feature values of the region classes in the segmentation at that particular
hierarchical level. The analyst can order the region classes by size, standard deviation or
boundary pixel ratio feature values. Then for each region class the analyst can view the
feature values of the region objects contained in that particular region class. These region
objects can also be ordered by size, standard deviation or boundary pixel ratio feature
value.

What is HSEGViewer?
HSEGViewer is a graphical user interactive (GUI) program written in C++ (utilizing the
gtkmm GUI library, see http://www.gtkmm.org/) that enables an analyst to visualize,
manipulate, and interact with, the hierarchical segmentation results produced by HSEG or
RHSEG. It is based on an earlier version of HSEGViewer that was written in Java, which
was, in turn, based on the “Region Labeling Tool” [7], an earlier GUI program written in
C.

With HSEGViewer, an analyst can view pseudo-color (random color table) versions of
the region class and region object segmentations at each hierarchical level saved by
HSEG or RHSEG, as well as view a region mean image and hierarchical region boundary
map image for each of these segmentations. An analyst can also select a particular region
class or object from a particular hierarchical level and label it with a selected color and
ASCII text string. With this region selection and labeling facility, an analyst can
selectively create a tailored image labeling. HSEGViewer also displays certain region
statistics for the selected region class or object over all hierarchical levels, including
region number of pixels, region mean vector values, region boundary pixel ratio, and
region standard deviation.

References
[1] J-M. Beaulieu and M. Goldberg, “Hierarchy in picture segmentation: A stepwise

optimal approach,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 11, No. 2, pp. 150-163, Feb. 1989.

[2] James C. Tilton, “Image Segmentation by Region Growing and Spectral Clustering
with a Natural Convergence Criterion,” Proceedings of the 1998 International
Geoscience and Remote Sensing Symposium, Seattle, WA, pp. 1766-1768, July 6-
10, 1998.

RHSEG User’s Manual Version 1.46

7

[3] J. C. Tilton, “D-dimensional formulation and implementation of recursive
hierarchical segmentation,” Disclosure of Invention and New Technology: NASA
Case No. GSC 15199-1, May 26, 2006.

[4] J. C. Tilton, “Parallel Implementation of the Recursive Approximation of an
Unsupervised Hierarchical Segmentation Algorithm,” Chapter 7 of High
Performance Computing in Remote Sensing, CRC Press, to be published in late
2007.

[5] James C. Tilton, “Method for recursive hierarchical segmentation which eliminates
processing window artifacts,” Disclosure of Invention and New Technology: NASA
Case No. GSC 14,681-1, October 11, 2002 (revised January 24, 2003). NOTE: U. S.
Patent Application Serial No. 10/845,419 was filed on this technology on May 11,
2004.

[6] James C. Tilton, “A split-remerge method for eliminating processing window
artifacts in recursive hierarchical segmentation,” Disclosure of Invention and New
Technology: NASA Case No. GSC 14,994-1, February 9, 2005.). NOTE: U. S.
Patent Application Serial No. 11/251,530 was filed on this technology on September
29, 2005. This patent application includes and supersedes the previous application
Serial No. 10/845,419.

[7] James C. Tilton, “A Region Labeling Tool for use with Hierarchical Segmentation,”
Disclosure of Invention and New Technology: NASA Case No. GSC 14,331-1,
February, 29, 2000. See also
http://cisto.gsfc.nasa.gov/TILTON/publications/region_label_disclosure/NF1679.html.

http://cisto.gsfc.nasa.gov/TILTON/publications/region_label_disclosure/NF1679.html�

RHSEG User’s Manual Version 1.46

8

Chapter 2: Installing the Programs

Overview
The HSEG/RHSEG package is available in four versions. Each version is installed
differently. This chapter provides detailed information on how to install each version.
The four versions are:

1. Core HSEG Open Source Release Version
2. RHSEG Demonstration Version
3. RHSEG Licensed Serial Version
4. RHSEG Licensed Parallel Version

All versions also include HSEGExtract, HSEGReader and HSEGViewer.

NOTEs: The Core HSEG Version provides a 2-Dimensional version of HSEG – without
the recursive subdivision of the input data. The RHSEG Demonstration Version provides
a 2-Dimensional version of HSEG/RHSEG. The 3-Dimensional version is available only
be special arrangement or with a licensed version of RHSEG.

Core HSEG Open Source Release Version
The HSEG suite of programs is written in C++. To install the programs, you need to
compile and link the provided source code with a C++ compiler.

The instructions provided here assume you have a GNU C++ (gcc) compiler installed
under a LINUX or UNIX (e.g., Sun Solaris) operating system, or under a Linux-type
environment on Windows. Use cygwin (http://www.cygwin.com/), djgpp
(http://www.delorie.com/djgpp) or MinGW-msys (http://www.mingw.org) to provide a
Linux-type environment for Windows machines. Tests were performed using gcc
versions 3.4.4, 3.4.5 and 4.1.2. Results are not guaranteed for other compilers and
systems, though it is very likely that you will be successful compiling the code in other
environments (particularly with the GNU C++ compiler).

The core HSEG open source release version and HSEGExtract can be built and installed
without any additional external libraries. However, to enable the capability to read a wide
variety of image data formats you will need to have the Geospatial Data Abstraction
Library (GDAL) installed on your computer. Also, HSEGViewer requires GDAL. You
may obtain GDAL from http://www.gdal.org/.

The core HSEG open source release version, HSEGExtract and HSEGReader may be
installed with or without a graphical user interface (GUI), but HSEGViewer requires a
GUI. However, to build the GUI versions of HSEG, HSEGExtract and HSEGReader, and
in order to build HSEGViewer, you will need to have gtkmm (the C++ Interface for
GTK+) installed on your system. GTK+ is a toolkit for creating graphical user interfaces.
See http://www.gtkmm.org to download and install this software.

The GUI version of HSEG also needs the pthreads library. The GNU Portable Threads
version of pthreads can be obtained from http://www.gnu.org/software/pth/.

http://www.cygwin.com/�
http://www.delorie.com/djgpp�
http://www.mingw.org/�
http://www.gdal.org/�
http://www.gtkmm.org/�
http://www.gnu.org/software/pth/�

RHSEG User’s Manual Version 1.46

9

Please also see the note at the end of this section for advice on installing GDAL, gtkmm
and pthreads.

The first step in building the core HSEG open source release version is to obtain copies
of hsegV1.46.tar.gz and CommonV1.46.tar.gz. The can be obtained from
http://opensource.gsfc.nasa.gov/projects/HSEG/Hseg.php.

To build and install the non-GDAL, non-GUI version of HSEG you just need
hsegV1.46.tar.gz. Place hsegV1.46.tar.gz in an appropriate one directory (e.g., $HOME/
src/HSEG) and uncompress and extract the files from this gzip’d tar file using gunzip and
tar (or just tar with the “z” option) as follows:

 gunzip hsegV1.46.tar.gz
and

 tar xvf hsegV1.46.tar
or

 tar xvfz hsegV1.46.tar.gz
Upon completing the above, you will see a directory hsegV1.46 with various
subdirectories. In the following we will refer to this directory (with the suggested full
path $HOME/src/HSEG/hsegV1.46) as HSEG_DIR.

You will find three makefiles in the HSEG_DIR directory. Makefile_nogdal is used to
build the non-GDAL, non-GUI version of HSEG, Makefile is for the GDAL, non-GUI
version, and Makefile_gtkmm is for the GDAL, GUI version. There are several macros
defined near the beginning of these makefiles. The first definitions listed are appropriate
for most Linux operating system environments. The other definitions may be appropriate
for Windows environments. Be sure to examine each makefile and make any changes in
the macro definitions that might be appropriate for your operating system environment.

The define.h file in HSEG_DIR contains definitions for compiler flags and program
constants. Check to see whether or not the “WINDOWS” compiler flag is left defined or
not. If you are on a Windows machine using djgpp or MinGW-msys, you need to make
sure this compiler flag is left defined (for cygwin, leave the compiler flag CYGWIN
defined instead). Look for the line:

//#undef WINDOWS // Leave defined if compiling on a Windows machine

and make sure it is commented out (as above) if you are on a Windows machine using
djgpp or MinGW-msys. Otherwise, make sure this compiler flag is undefined by editing
this line (if necessary) to make it look like the following:

#undef WINDOWS // Leave defined if compiling on a Windows machine

You should not need to modify the definitions of any of the other compiler flags in
define.h.

Now examine the main.h file in HSEG_DIR. For non-GDAL, non-GUI version of HSEG
you will need to undefine the GDAL and GTKMM compiler flags in the main.h file.
Look for the line:

#undef GTKMM // GTKMM may be undefined if a GUI is not desired as an option

http://opensource.gsfc.nasa.gov/projects/HSEG/Hseg.php�

RHSEG User’s Manual Version 1.46

10

#undef GDAL // Normally do not undefined GDAL!

and edit these lines, if necessary, so that there is no “//” at the beginning of this line (as
shown). Assuming you have made the necessary changes to the file “Makefile” for your
installation directory and compiler, you now should be able to build the non-GDAL, non-
GUI version of HSEG by executing the command:

 make –f Makefile_nogdal all
in the HSEG_DIR directory. In some environments you might see warning like

warning: '__cur' might be used uninitialized in this function

that you should ignore. Besides this warning, this version of HSEG should build cleanly.
Be sure to fix any problems encountered here before trying to build any other versions of
HSEG or any of the companion programs (HSEGExtract, HSEGReader or
HSEGViewer). Contact the author of this User’s Manual if you can’t solve the problems
on your own.

CommonV1.46.tar.gz is needed for the GDAL version of HSEG. Place this file in an
appropriate directory (e.g., $HOME/src) and unpack it. You will now see the directory
CommonV1.46 with various subdirectories. The path to this directory will be referred to
as COMMON_DIR (e.g., $HOME/src/CommonV1.46) in the following.

To build the non-GUI, GDAL version of HSEG you will, of course, need to have GDAL
installed on your computer. Once GDAL is installed, you may build this version of
HSEG as follows. First check to make sure that COMMON_DIR is defined correctly in
HSEG_DIR/Makefile. Then verify that GDAL is not undefined in HSEG_DIR/main.h by
commenting out the line:

//#undef GDAL // Normally do not undefined GDAL!

as shown. Then build and install the non-GUI, GDAL version of HSEG by executing the
command:

 make all
in the HSEG_DIR directory.

To build the GUI version of HSEG you will need to have gtkmm installed on your
computer. You may build the GUI, GDAL version of HSEG as follows. Make sure
COMMON_DIR is defined correctly in HSEG_DIR/Makefile_gtkmm. Then ensure that
GTKMM and GDAL are not undefined in HSEG_DIR/main.h by commenting out the
lines:

//#undef GTKMM // GTKMM may be undefined if a GUI is not desired as an option

//#undef GDAL // Normally do not undefined GDAL!

as shown. Then build and install the GUI, GDAL version of HSEG by executing the
command:

 make –f Makefile_gtkmm all
in the HSEG_DIR directory.

RHSEG User’s Manual Version 1.46

11

RHSEG Demonstration Version
Obtain a copy of RHSEG_setup.exe and copy it to a convenient location on your
computer. You can start the RHSEG installation by double clicking on the program icon.
You can also start the installation by clicking on “start”, then on “Run.” After browsing
for the RHSEG_setup.exe program, run it by clicking on “OK.”

By default, the RHSEG package is installed in the C:\Program Files\RHSEG directory.
However, you can choose to have it installed in another directory if you so desire. You
can then choose to have RHSEG installed in an existing Program Manager Group, or in
its own group called “RHSEG.” Following the simple installation instructions will
complete the process.

What the installation does:

The RHSEG suite of executables (rhsegGUI.exe, rhseg.exe, hsegextract.exe,
hsegreader.exe and hsegviewer.exe) and several other associated files are copied to the
installation directory (by default, C:\Program Files\RHSEG). A subdirectory, named
“Sample Data,” is also created into which a sample image data set and parameter file are
copied. You can use this sample image data set and parameter file to test your installation
of RHSEG. Finally the dlls subdirectory is also created. This subdirectory contains the
necessary dll library files.

The directory paths to the RHSEG executables and the dll library files (by default
C:\Program Files\RHSEG and C:\Program Files\RHSEG\dll\bin, respectively) are added
to the system PATH environment variable.

An entry “RHSEG” is added to the Program List (accessed through the “start” button).
Included under the RHSEG entry, are subentries “RHSEG User's Manual,” “RHSEG,”
“HSEGExtract,” “HSEGReader,” and “HSEGViewer.”

RHSEG Licensed Serial Version
The RHSEG suite of programs is written in C++. To install the programs, you need to
compile and link the provided source code with a C++ compiler.

The instructions provided here assume you have a GNU C++ (gcc) compiler installed
under a LINUX or UNIX (e.g., Sun Solaris) operating system, or under a Linux-type
environment on Windows. Use cygwin (http://www.cygwin.com/), djgpp
(http://www.delorie.com/djgpp) or MinGW-msys (http://www.mingw.org) to provide a
Linux-type environment for Windows machines. Tests were performed using gcc
versions 3.4.4, 3.4.5 and 4.1.2. Results are not guaranteed for other compilers and
systems, though it is very likely that you will be successful compiling the code in other
environments (particularly with the GNU C++ compiler).

The RHSEG program is available in three versions. Building the “rhseg_run” version
requires nothing else besides a C++ compiler. However, the “rhseg” version requires that
you have the Geospatial Data Abstraction Library (GDAL) installed on your computer. If
GDAL is not already installed on your computer go to http://www.gdal.org/ and install
GDAL before proceeding further in building the “rhseg” version of RHSEG. The
“rhsegGUI” version of RHSEG (RHSEG with a graphical user interface) also requires

http://www.cygwin.com/�
http://www.delorie.com/djgpp�
http://www.mingw.org/�
http://www.gdal.org/�

RHSEG User’s Manual Version 1.46

12

that you have gtkmm (the C++ Interface for GTK+) installed on your system. GTK+ is a
toolkit for creating graphical user interfaces. See http://www.gtkmm.org to download and
install this software. The “rhsegGUI” of RHSEG also needs the pthreads library. The
GNU Portable Threads version of pthreads can be obtained from
http://www.gnu.org/software/pth/.

Please also see the note at the end of this section for advice on installing GDAL, gtkmm
and pthreads.

Once your licensing agreement is finalized, you should be provided with copies of
rhsegV1.46.tar.gz and CommonV1.46.tar.gz. As the first step in building the suite of
RHSEG programs, place rhsegV1.46.tar.gz in an appropriate directory (e.g., $HOME/
src/RHSEG) and uncompress and extract the files from this gzip’d tar file using gunzip
and tar (or just tar with the “z” option) as follows:

 gunzip rhsegV1.46.tar.gz
and

 tar xf rhsegV1.46.tar
or

 tar xzf rhsegV1.46.tar.gz
Upon completing the above, you will see a directory rhsegV1.46 with various
subdirectories. In the following we will refer to this directory (with the suggested full
path $HOME/src/RHSEG/rhsegV1.46) as RHSEG_DIR.

You will find four makefiles in the RHSEG_DIR directory. Makefile and
Makefile_serialkey are used to build the “rhseg” version of RHSEG, with or without
serial key dependency, respectively. (The serial key function is used to limit access to the
RHSEG program executable.) Makefile_gtkmm and Makefile_serialkey_gtkmm are use
to build the “rhsegGUI” version of RHSEG, with or without serial key dependency,
repectively. There are several macros defined near the beginning of these makefiles. The
first definitions listed are appropriate for most Linux operating system environments. The
other definitions may be appropriate for Windows environments. Be sure to examine
each makefile and make any changes in the macro definitions that might be appropriate
for your operating system environment.

The define.h file in RHSEG_DIR contains definitions for compiler flags and program
constants. Check to see whether or not the “WINDOWS” compiler flag is left defined or
not. If you are on a Windows machine using djgpp or MinGW-msys, you need to make
sure this compiler flag is left defined (for cygwin, leave the compiler flag CYGWIN
defined instead). Look for the line:

//#undef WINDOWS // Leave defined if compiling under Windows

and make sure it is commented out (as above) if you are on a Windows machine using
cygwin, djgpp or MinGW-msys. Otherwise, make sure this compiler flag is undefined by
editing this line (if necessary) to make it look like the following:

#undef WINDOWS // Leave defined if compiling under Windows

http://www.gtkmm.org/�
http://www.gnu.org/software/pth/�

RHSEG User’s Manual Version 1.46

13

Since you are a licensed user of RHSEG, you will also want to make sure the
“SERIALKEY” compiler flag is undefined. Otherwise you will have to enter in a “Serial
Key” to run “rhseg” or “rhseg_run.” Make sure this compiler flag is undefined by editing
the line

#undef SERIALKEY // Leave defined if using the Serial Key code for access control

(if necessary) to make it look as above.

You should not need to modify the definitions of any of the other compiler flags in
define.h.

To build the “rhseg_run” version of RHSEG, go to the RHSEG_DIR/rhseg_run directory
and execute the command:

 make all
after making sure that the macro definitions in RHSEG/DIR/rhseg_run/Makefile are
appropriate for your operating system environment. In some environments you might see
warning like

warning: '__cur' might be used uninitialized in this function

that you should ignore. Besides this warning, this version of “rhseg_run” should build
cleanly. Be sure to fix any problems encountered here before trying to build any other
versions of RHSEG or any of the companion programs (HSEGExtract, HSEGReader or
HSEGViewer). Contact the author of this User’s Manual if you can’t solve the problems
on your own.

The “rhseg_run” version of RHSEG requires that your input data be put into a simple
“raw” data format. You can use the “rhseg_setup” to do this for you. The “rhseg_setup”
program requires GDAL, and can be built with or without a GUI.

Since “rhseg_setup” requires GDAL, it also needs CommonV1.46.tar.gz (which contains
interfaces to various GDAL and gtkmm routines). Place this file in an appropriate
directory (e.g., $HOME/src) and unpack it. You will now see the directory
CommonV1.46 with various subdirectories. The path to this directory will be referred to
as COMMON_DIR (e.g., $HOME/src/CommonV1.46) in the following.

To build the non-GUI, GDAL version of “rhseg_setup,” undefine the GTKMM compiler
flag in the RHSEG_DIR/rhseg_setup/main.h file. Look for the line:

#undef GTKMM // GTKMM may be undefined if a GUI is not desired as an option

and edit this line, if necessary, so that there is no “//” at the beginning of this line (as
shown). Also make sure RHSEG_DIR and COMMON_DIR and the other macros are
defined appropriately for your operating system environment in RHSEG_DIR/
rhseg_setup/Makefile. Then build and install this version of “rhseg_setup” by executing
the command:

make all
in the RHSEG_DIR/rhseg_setup directory.

To build the GUI, GDAL version of “rhseg_setup,” you will need to have gtkmm
installed on your computer. Once gtkmm is installed, you may build this version of

RHSEG User’s Manual Version 1.46

14

“rhseg_setup” as follows. Make sure that the GTKMM compiler flag is left defined in the
RHSEG_DIR/rhseg_setup/main.h file. Look for the line:

//#undef GTKMM // GTKMM may be undefined if a GUI is not desired as an option

and edit this line, if necessary, so that there is a “//” at the beginning of this line (as
shown). Also make sure RHSEG_DIR and COMMON_DIR and the other macros are
defined correctly in RHSEG_DIR/rhseg_setup/Makefile_gtkmm. Then build and install
this version of “rhseg_setup” by executing the command:

make –f Makefile_gtkmm all
in the RHSEG_DIR/rhseg_setup directory.

The “rhseg_setup” and “rhseg_run” programs are designed to work together. The
“rhseg_setup” program converts the input image data from various popular image data
formats to the plain “raw” data format required by “rhseg_run.” It also creates the input
parameter file “rhseg_run.params” for “rhseg_run.” This arrangement is most useful
when it is advantageous to run the “rhseg_run” program on a separate more powerful
computer (such as a parallel cluster) that does not have GDAL or gtkmm installed on it.

You may also build and install a consolidated version of RHSEG, “rhseg.” This version
of RHSEG requires GDAL and may be built with or without a GUI. Follow the following
steps to build the non-GUI version of “rhseg.” First check to make sure that
COMMON_DIR is defined correctly in RHSEG_DIR/Makefile. Then verify that the
GTKMM compiler flag is undefined in the RHSEG_DIR/main.h file by editing the
appropriate line (if necessary) to look like the following:

#undef GTKMM // GTKMM may be undefined if a GUI is not desired as an option

Then build and install the non-GUI, GDAL version of RHSEG (“rhseg”) by executing the
command:

make all
in the RHSEG_DIR directory.

Follow the following steps to build the GUI version of “rhseg.” First check to make sure
that COMMON_DIR is defined correctly in RHSEG_DIR/Makefile_gtkmm. Then verify
that the GTKMM compiler flag is not undefined in the RHSEG_DIR/main.h file by
editing the appropriate line (if necessary) to look like the following:

//#undef GTKMM // GTKMM may be undefined if a GUI is not desired as an option

Then build and install the GUI, GDAL version of RHSEG (“rhseg”) by executing the
command:

make –f Makefile_gtkmm all
in the RHSEG_DIR directory.

If you will be using RHSEG primarily to process 2-dimensional image data, you should
use the 2d version of RHSEG. While the 3d version of RHSEG can process 2-
dimensional (and 1-dimensional) data by setting nslices = 1 (and nrows = 1), the 2d
version of RHSEG will process 2-dimensional (and 1-dimensional) data more efficiently.
The RHSEG suite of programs is by default set to compile for 2-d processing.

RHSEG User’s Manual Version 1.46

15

If you do want process 3-d data, you will need to leave the THREEDIM compiler flag
defined in the define.h file. Look for the line:

//#undef THREEDIM // Leave defined if three-dimensional processing is desired.

and edit this line, if necessary, so that “//” is at the beginning of this line (as shown).

RHSEG Licensed Parallel Version
TBD

HSEGExtract, HSEGReader, and HSEGViewer
You can build hsegextract, hsegreader and hsegviewer by going to the appropriate
directory, HSEG_DIR/hsegextract (or RHSEG/rhseg_extract), HSEG_DIR/hsegreader
(or RHSEG_DIR/rhseg_read) and HSEG_DIR/hsegviewer (or RHSEG_DIR/rhseg_view)
in turn and following the same procedure you used to build hseg or rhseg. For hsegextract
and hsegreader you have the option of building either a GUI or non-GUI version, and
hsegreader does not require GDAL. In building these programs, make sure
COMMON_DIR and HSEG_DIR or RHSEG_DIR and the other macros are defined
correctly in the makefiles.

Advice on Installing GDAL, gtkmm and pthreads
Installation packages for GDAL and gtkmm binaries are available for most Linux
operating systems and for the MinGW-msys environment under Windows. While pthread
binaries don’t appear to be generally available, this package should be easy to build from
source under most Linux operating systems. Pre-built versions of the latest DLL,
development library and include files for pthreads on Windows (including MinGW-msys)
are available from ftp://sourceware.org/pub/pthreads-win32/dll-latest.

Unfortunately such installation packages and/or pre-built libraries for GDAL and gtkmm
are not available for djgpp and cygwin under Windows. A build should be possible under
djgpp, but this has not been tested by the author. The author has successfully used the
following procedure to build GDAL, gtkmm and also pthreads (required for the GUI
version of RHSEG) from source under cygwin. Source code for these three packages are
available from http://www.gtkmm.org/, http://www.gdal.org/ and
http://www.gnu.org/software/pth/, respectively.

GTK+ is required for gtkmm. The version of GTK+ available through cygwin is too old
to work with the version gtkmm required by RHSEG (in particular, for hsegviewer).
Building GTK+ and its dependencies from source is a big challenge.

I found the tutorial posted at http://kemovitra.blogspot.com/2009/06/cygwin-tutorial-
compiling-gtk-2162-for.html to be invaluable for building the needed version of GTK+. I
installed the latest version of each package described using the approach outlined in the
tutorial:

glib-2.20.5, jpegsrc.V7, tiff-3.8.2, atk-1.27.90, cairo-1.8.8, pango-1.24.5, and gtk+-2.16.6

Additional prerequisites for gtkm are cairomm, glibmm, libsigc++, and pangomm.

ftp://sourceware.org/pub/pthreads-win32/dll-latest�
http://kemovitra.blogspot.com/2009/06/cygwin-tutorial-compiling-gtk-2162-for.html�
http://kemovitra.blogspot.com/2009/06/cygwin-tutorial-compiling-gtk-2162-for.html�

RHSEG User’s Manual Version 1.46

16

I successfully built the following in a similar manner to the advice provided by the GTK+
tutorial:

cairomm-1.8.2, glibmm-2.20.1, libsigc++-2.2.4 and pangomm-2.24.0.

In cairomm/fontface.cc I had to make the following modification:

I changed:

cairo_font_face_set_user_data(cobj(),
&USER_DATA_KEY_DEFAULT_TEXT_TO_GLYPHS,
reinterpret_cast<void*>(true), NULL);

to:

int int_true = true;

cairo_font_face_set_user_data(cobj(),
&USER_DATA_KEY_DEFAULT_TEXT_TO_GLYPHS,
reinterpret_cast<void*>(int_true), NULL);

I had to hack (glibmm)/examples/compose/main.cc in order to get glibmm to build.

I commented out the lines:

// << std::endl
// << ustring::compose("a : b = [%1|%2]",
// ustring::format(std::setfill(L'a'), std::setw(i), ""),
// ustring::format(std::setfill(L'b'), std::setw(40 - i), ""))

as shown above. (Let me know if you have a better solution. The above really is a bad
hack!)

I found that the install of GDAL is straightforward. Here you can use the latest version.
It's probably best to use the built-in versions of libz, libtiff, libgeotiff, libpng, libgif and
libjpeg, as these versions are probably newer than those provided by cygwin. I built
GDAL version 1.6.2.

I found that the install of pthreads was straightforward. Here you also can use the latest
version (2.0.7).

RHSEG User’s Manual Version 1.46

17

Chapter 3: Running the Programs

Overview
This chapter provides an overview of how to run the RHSEG, HSEG, HSEGExtract,
HSEGReader and HSEGViewer suite of programs.

Running RHSEG
There are three versions of the RHSEG program provided with the demonstration version
of RHSEG, all of which can also be built in the licensed version. The version that does
not depend on gtkmm or GDAL is named “rhseg_run,” the version that depends upon
GDAL but not gtkmm is named “rhseg,” and the version that depends on both gtkmm and
GDAL is named “rhsegGUI.” There is also a companion program to “rhseg_run” called
“rhseg_setup,” which depends on both gtkmm and GDAL.

The version of RHSEG most similar to previous versions is “rhseg_run.” This is also the
only version that can be used for three-dimensional image processing (licensed version
only). To run “rhseg_run,” create a parameter file with the appropriate entries, and run
the program with the following command:

rhseg_run parameter_file_name
The parameter file consists of entries of the form:

-parameter_name parameter_values(s)

This parameter file may be constructed manually following the definitions provided in
the on-line help, which may be obtained through the command:

rhseg_run –h or rhseg_run -help
and/or by referring Chapter 4 of this User’s Manual.

The “rhseg_run” version of RHSEG requires that the input data be a headerless binary 1-,
2-, or 3-spatial dimension image or image-like data file in band sequential format. See
Chapter 4 of this User’s Manual for more details.

The parameter file may also be constructed automatically using the “rhseg_setup”
program with the command:

rhseg_setup
Invoking this command will display a GUI through which you can provide the input
parameter information. In this case, the input image data must be in one of the image data
formats recognized by GDAL instead of the headerless binary data file expected by
“rhseg_run.” You must specify the “Input image data file,” “the relative importance of
spectral clustering vs. region growing,” and the “Output log file” through this GUI. You
may also optionally specify an “Input mask data file” and “Input region map data file” as
well as specify a “Dissimilarity Criterion” other than the default “Square Root of Band
Sum Mean Squared Error.” Once the requirements of this GUI panel are satisfied, you
may either run the program by selecting the “Program Action” “Run RHSEG,” or specify

RHSEG User’s Manual Version 1.46

18

additional output files by selecting the “Program Action” “Go to Next Panel.” From the
“RHSEG Output File Specification” panel you may also similarly choose to “Run
RHSEG,” or “Go to Next Panel.” In this case, the next panel allows you to specify non-
default values for other RHSEG parameters. From this “RHSEG Parameter
Specification” panel you may also run the program by selecting the “Program Action”
“Run RHSEG.”

“Running” RHSEG from the “rhseg_setup” program does not actually run the RHSEG
algorithm, but instead creates an input parameter file for “rhseg_run” (with the default
name “rhseg_run.params”). It also creates the headerless binary input data files required
by “rhseg_run.”

You may also run RHSEG from a command line with a parameter file using the “rhseg”
command. In contrast the “rhseg_run,” in this case the input image data must be in one of
the image data formats recognized by GDAL instead of the headerless binary data file
expected by “rhseg_run.” At a minimum you must also specify a value for the parameters
spclust_wght and log (see Chapter 4 of this User’s Manual).

Invoking “rhsegGUI” (without the parameter file name) will bring up the GUI version of
RHSEG. The GUIs are exactly the same as described in the discussion of “rhseg_setup”
above. In this case, though, when you request “Run RHSEG” you will actually run the
RHSEG algorithm! If you like, you can create a shortcut for this program and place it on
your desktop.

When RHSEG is run using the “rhsegGUI” version, upon completion of the RHSEG
program, the user is given the opportunity to run HSEGReader, HSEGViewer and/or
display the log file by selecting buttons on a GUI.

Again, for help on the parameter file entries, type

rhseg –h or rhseg -help
To find out the version of your copy of RHSEG type

rhseg –v or rhseg -version
Special notes for the RHSEG demonstration version:

Notes for the demonstration version:

(i) For the demonstration version, the first time you run the “rhseg” or “rhseg_run”
version of the RHSEG program, you will be prompted for your user name and Serial
Key, which should have been provided to you with RHSEG_setup.exe. This information
is written to a file in the system TEMP directory. Subsequent runs of RHSEG read the
user name and Serial Key information from this file, and you will not be prompted at all.
However, if this file gets corrupted or deleted - then you will again be prompted for the
information. In this case, reenter your original Serial Key, or obtain a new Serial Key
from the distributor of RHSEG_setup.exe. When your time allotment expires you will
again be prompted to enter your user name and Serial Key. In this case, you will have to
contact the distributor of RHSEG_setup.exe for terms under which a new Serial Key can
be obtained, or for arranging the procurement of a licensed version of RHSEG.

RHSEG User’s Manual Version 1.46

19

(ii) For the initial run of RHSEG, serialkey information must be entered via the command
line (non-GUI) version of RHSEG, called from a DOS command window or a LINUX
terminal window. Subsequent runs of RHSEG (within the demonstration period) may be
run, if desired, through the GUI version.

For the demonstration version, the Sample Data folder in the RHSEG installation
directory (C:\Program Files\RHSEG by default) contains the following sample files:

girl.bmp Sample Image Data File
rhseg.params Sample Parameter File

Using these files, you can test RHSEG by bringing up a DOS window, setting your
directory location to this Sample Data folder and typing the command:

rhseg rhseg.params
The program should take a little over 1 minute to run on a 2 GHz clock machine. You
may also use this sample data set to test the GUI version of RHSEG.

Running HSEG
There is just one version of the HSEG program provided with the Core HSEG Open
Source release, but it can be built in two ways. By one build option, “hseg” is like
“rhseg” above, in that it depends upon GDAL but not gtkmm. By the other build option,
“hseg” is like “rhsegGUI” above, and depends on both gtkmm and GDAL.

The non-gtkmm dependent version of HSEG must be run from a command line with a
parameter file using the “hseg” command. For “hseg,” like “rhseg” above, the input
image data must be in one of the image data formats recognized by GDAL. At a
minimum you must also specify a value for the parameters spclust_wght and log (see
Chapter 4 of this User’s Manual).

To run “hseg,” create a parameter file with the appropriate entries, and run the program
with the following command:

hseg parameter_file_name
The parameter file consists of entries of the form:

-parameter_name parameter_values(s)

This parameter file may be constructed manually following the definitions provided in
the on-line help, which may be obtained through the command:

hseg –h or hseg -help
and/or by referring Chapter 4 of this User’s Manual.

The “hseg” program may also be built with dependence on gtkmm. When built this way,
invoking “hseg” (without the parameter file name) will bring up the GUI version of
HSEG. The GUIs are exactly the same as described in the discussion of “rhseg_setup”
above. In this case, though, when you request “Run RHSEG” you will actually run the
HSEG algorithm! If you like, you can create a shortcut for this program and place it on
your desktop.

RHSEG User’s Manual Version 1.46

20

When HSEG is run using the GUI (gtkmm dependent) version, upon completion of the
HSEG program, the user is given the opportunity to run HSEGReader, HSEGViewer
and/or display the log file by selecting buttons on a GUI.

Again, for help on the parameter file entries, type

hseg –h or hseg -help
To find out the version of your copy of RHSEG type

hseg –v or hseg -version
HSEG will take a long time to run for all but the smallest images. However, you can
investigate the behavior of HSEG on large images by using it in combination with
RHSEG by first running RHSEG such that in terminates (or generates its first output) at a
reasonable number of regions (less than a few thousand), and then use the class label map
output from RHSEG to initialize a run of HSEG. See Chapter 4 of this User’s Manual for
additional information.

Running HSEGExtract
In running the HSEGExtract program, you will find it most convenient to set your
directory location to the directory where the output files from a run of the RHSEG reside,
but this is not necessary. You may run HSEGExtract with either of the following
commands:

hsegextract
or

hsegextract parameter file name
The first choice brings up a parameter input GUI. This version of HSEGExtract can also
be called from “RHSEG” group in “All Programs” in the “start” menu in Windows. If
you like, you can create a shortcut for this program and place it on your desktop.

The second choice uses an input parameter file. A description of the contents of this file
can be found using the command:

hsegextract –h or hsegextract -help
To find out the version of your copy of HSEGExtract type

hsegextract –v or hsegextract -version
The HSEGExtract program is designed to directly use the outputs from the RHSEG
program as its inputs. In particular, the output parameter file from RHSEG (with the
suffix “oparam”) provides most of the needed inputs for the HSEGExtract program.

If you run HSEGExtract with a parameter file and all the required parameters are not
specified properly in the parameter file, the program will display the parameter input GUI
panel (as if run with the “hsegextract” command). Once all appropriate parameters are
entered in the HSEGExtract parameter input GUI panel, select the “Run Program” option
in the “Program Actions” menu. The HSEGExtract program will now run producing the
selected outputs.

RHSEG User’s Manual Version 1.46

21

For the demonstration version, the Samples folder in the RHSEG installation directory
(C:\Program Files\RHSEG by default) contains the following sample files:

 girl.bmp Sample Image Data File
 rhseg.params Sample Parameter File

As noted earlier in the section “Running RHSEG,” RHSEG can be tested by bringing up
a DOS window, setting your directory location to this Samples folder and typing the
command:

rhseg rhseg.params
Once RHSEG completes, you will find that RHSEG produced the following files:

 girl.log RHSEG log file
 girl.oparam RHSEG output parameter file
 girl.class_labels_map RHSEG region class label map for hierarchical level 0
 girl.region_classes RHSEG region class information (all levels)
 girl.boundary_map RHSEG hierarchical boundary map
 girl.object_labels_map RHSEG region object label map for hierarchical level 0
 girl.region_objects RHSEG region object information (all levels)

HSEGExtract uses these files as input (except for girl.log). The girl.oparam file contains
the names of all of the input files for HSEGExtract, plus other required information such
as image number of rows and columns, number of regions at hierarchical level 0, and the
number of hierarchical levels.

An input parameter file for HSEGExtract is also provided: hsegextract.params.

Thus, HSEGExtract can be run by simply providing it with the name of the HSEGExtract
input parameter file:

hsegextract hsegextract.params
An alternate way to run HSEGExtract is with the command:

hsegextract
As noted earlier, this version of HSEGExtract can also be called from “RHSEG” group in
“All Programs” in the “start” menu in Windows. In this case you will need to enter
“girl.oparam” as the “RHSEG/HSEG Output Parameter File” (as an input to
HSEGExtract).

When run with the “hsegextract” command, all the other required parameter value entries
will be read from the “RHSEG/HSEG Output Parameter File.” Once you have selected
values for the optional parameters (or left them at their default values) you run the
program by selecting “Run Program,” under the “Program Actions” menu (upper left
corner of the panel). The HSEGExtract program will now run producing the selected
outputs.

RHSEG User’s Manual Version 1.46

22

Running HSEGReader
In running the HSEGReader program, you will find it most convenient to set your
directory location to the directory where the output files from a run of the RHSEG reside,
but this is not necessary. You may run HSEGReader with either of the following
commands:

hsegreader
or

hsegreader parameter file name
The first choice brings up a parameter input GUI. This version of HSEGReader can also
be called from “RHSEG” group in “All Programs” in the “start” menu in Windows. If
you like, you can create a shortcut for this program and place it on your desktop.

The second choice uses an input parameter file. A description of the contents of this file
can be found using the command:

hsegreader –h or hsegreader -help
To find out the version of your copy of HSEGReader type

hsegreader –v or hsegreader -version
The HSEGReader program is designed to directly use the outputs from the RHSEG
program as its inputs. In particular, the output parameter file from RHSEG (with the
suffix “oparam”) provides most of the needed inputs for the HSEGReader program.

If you run HSEGReader with a parameter file and all the required parameters are not
specified properly in the parameter file, the program will display the parameter input GUI
panel (as if run with the “hsegreader” command). Once all appropriate parameters are
entered in the HSEGReader parameter input GUI panel, select the “Run Program” option
in the “Program Actions” menu. The main panel for the HSEGReader program will now
appear.

For the demonstration version, the Samples folder in the RHSEG installation directory
(C:\Program Files\RHSEG by default) contains the following sample files:

 girl.bmp Sample Image Data File
 rhseg.params Sample Parameter File

As noted earlier in the section “Running RHSEG,” RHSEG can be tested by bringing up
a DOS window, setting your directory location to this Samples folder and typing the
command:

rhseg rhseg.params
Once RHSEG completes, you will find that RHSEG produced the following files:

 girl.log RHSEG log file
 girl.oparam RHSEG output parameter file
 girl.class_labels_map RHSEG region class label map for hierarchical level 0

RHSEG User’s Manual Version 1.46

23

 girl.region_classes RHSEG region class information (all levels)
 girl.boundary_map RHSEG hierarchical boundary map
 girl.object_labels_map RHSEG region object label map for hierarchical level 0
 girl.region_objects RHSEG region object information (all levels)

HSEGReader uses these files as input (except for girl.log). The girl.oparam file contains
the names of all of the input files for HSEGReader, plus other required information such
as image number of rows and columns, number of regions at hierarchical level 0, and the
number of hierarchical levels.

An input parameter file for HSEGReader is also provided: hsegreader.params.

Thus, HSEGReader can be run by simply providing it with the name of the HSEGReader
input parameter file:

hsegreader hsegreader.params
An alternate way to run HSEGReader is with the command:

hsegreader
As noted earlier, this version of HSEGReader can also be called from “RHSEG” group in
“All Programs” in the “start” menu in Windows. In this case you will need to enter
“girl.oparam” as the “RHSEG/HSEG Output Parameter File” (as an input to
HSEGReader).

When run with the “hsegreader” command, all the other required parameter value entries
will be read from the “RHSEG/HSEG Output Parameter File.” Once you have selected
values for the optional parameters (or left them at their default values) you run the
program by selecting “Run Program,” under the “Program Actions” menu (upper left
corner of the panel). The main “Hierarchical Segmentation Results Reader” panel will
then appear.

Once the “Hierarchical Segmentation Results Reader” panel is displayed, you may select
a particular hierarchical segmentation level. Once you do so, you can choose to order the
region classes by size, standard deviation or by boundary pixel ratio feature value. The
feature values for the appropriate region class are now displayed. You can then examine
the next largest region class, or choose to order the region objects contained in the
selected region class by size, standard deviation or by boundary pixel ratio feature value.
The feature values for the appropriate region object are now displayed.

Running HSEGViewer
In running the HSEGViewer program, you will find it most convenient to set your
directory location to the directory where the output files from a run of the RHSEG reside,
but this is not necessary. You may run HSEGViewer with either of the following
commands:

hsegviewer
or

hsegviewer parameter file name

RHSEG User’s Manual Version 1.46

24

The first choice brings up a parameter input GUI. This version of HSEGViewer can also
be called from “RHSEG” group in “All Programs” in the “start” menu in Windows. If
you like, you can create a shortcut for this program and place it on your desktop.

The second choice uses an input parameter file. A description of the contents of this file
can be found using the command:

hsegviewer –h or hsegviewer -help
To find out the version of your copy of HSEGViewer type

hsegviewer –v or hsegviewer -version
The HSEGViewer program is designed to directly use the outputs from the RHSEG
program as its inputs. In particular, the output parameter file from RHSEG (with the
suffix “oparam”) provides most of the needed inputs for the HSEGViewer program.

If you run HSEGViewer with a parameter file and all the required parameters are not
specified properly in the parameter file, the program will display the parameter input GUI
panel (as if run with the “hsegviewer” command). Once all appropriate parameters are
entered in the HSEGViewer parameter input GUI panel, select the “Run Program” option
in the “Program Actions” menu. The main panel for the HSEGViewer program will now
appear.

Note: The “Output Selected Class Label Map File” and the optional “Output ASCII Class
Label Names List File” can be used to store intermediate results from one session of the
HSEGViewer program. These files can be used as the “Input Class Label Map File” and
“Input ASCII Class Label Names List File”, respectively, to start up where you left off in
a previous session. (The ASCII Class Label Names List File also includes color map
information.)

For the demonstration version, the Samples folder in the RHSEG installation directory
(C:\Program Files\RHSEG by default) contains the following sample files:

 girl.bmp Sample Image Data File
 rhseg.params Sample Parameter File

As noted earlier in the section “Running RHSEG,” RHSEG can be tested by bringing up
a DOS window, setting your directory location to this Samples folder and typing the
command:

rhseg rhseg.params
Once RHSEG completes, you will find that RHSEG produced the following files:

 girl.log RHSEG log file
 girl.oparam RHSEG output parameter file
 girl.class_labels_map RHSEG region class label map for hierarchical level 0
 girl.region_classes RHSEG region class information (all levels)
 girl.boundary_map RHSEG hierarchical boundary map
 girl.object_labels_map RHSEG region object label map for hierarchical level 0
 girl.region_objects RHSEG region object information (all levels)

RHSEG User’s Manual Version 1.46

25

HSEGViewer uses these files as input (except for girl.log), along with the original data
file (in this case, girl.bmp). The girl.oparam file contains the names of all of the input
files for HSEGViewer, plus other required information such as image number of rows
and columns, number of regions at hierarchical level 0, and the number of hierarchical
levels.

An input parameter file for HSEGViewer is also provided: hsegviewer.params.

Thus, HSEGViewer can be run by simply providing it with the name of the HSEGViewer
input parameter file:

hsegviewer hsegviewer.params
An alternate way to run HSEGViewer is with the command:

hsegviewer
As noted earlier, this version of HSEGViewer can also be called from “RHSEG” group in
“All Programs” in the “start” menu in Windows. In this case you will need to enter
“girl.oparam” as the “RHSEG/HSEG Output Parameter File” (as an input to
HSEGViewer).

When run with the “hsegviewer” command, with the exception of the Red, Green and
Blue Display Band values, all the other required parameter value entries will be read
from the “RHSEG/HSEG Output Parameter File.” Since the example girl image is a RGB
image with bands stored in the order blue, green then red, enter “0” for the “Red Display
Band,” “1” for the “Green Display Band,” and “2” for the “Blue Display Band.” Then,
under the “Program Actions” menu (upper left corner of the panel), select “Run
Program.” The main “Hierarchical Segmentation Results Viewer” panel will then appear.

Details on using the HSEGViewer main panel for viewing and interacting with the
hierarchical segmentation results, and more details on configuring and starting the
HSEGViewer program are provided in Chapter 5: “HSEGViewer Tutorial.”

RHSEG User’s Manual Version 1.46

26

Chapter 4: Guide to HSEG/RHSEG Parameters and
Parameter Settings

Overview
This chapter provides information on the HSEG/RHSEG program parameters and
provides some guidance as to appropriate parameter settings.

HSEG/RHSEG Program Parameters
HISTORY: * Version 1.46 is a minor upgrade/bug fix over Version 1.45. The most

significant change is the restoration of the “region of interest” capability to
HSEGViewer that was lost when HSEGViewer was converted to C++
from JAVA for Version 1.32. Another important change is that the reading
of parameter values from parameter files was made much more robust.
With this version there can be any number of spaces or tabs between the
parameter name and parameter value.

 * Version 1.45 of RHSEG brought with it some significant operational
changes: The capability was added to input float format input image data,
the dtype parameter definitions were changed, a complete GUI was added
as an option, and a capability to input image data in a wide variety of
popular image data formats was (optionally) provided.

 * A “percent complete” tracking facility was added to both the command
line and GUI versions of RHSEG with version 1.42.

 * With version 1.41, the chk_mn_std_dev and conv_mn_std_dev input
parameters were added in version 1.32 were removed and the behavior of
the region_std_dev parameter was changed. The optional
hseg_out_nregions and hseg_out_thresholds parameters were added.

 * A option for a rudimentary GUI is provided with version 1.40. This GUI
option makes it possible to make RHSEG a desktop function in Windows.

 * A large number of changes were made to the input parameters with
version 1.32. Most of these changes are related to the consolidation of the
output region class and region object information into the region_classes
and region_objects files. In addition, the rlblmap output was renamed to
class_labels_map, the conn_rlblmap output was renamed to
object_labels_map, and the rlblmap_in input was renamed to
region_map_in. The chk_mn_std_dev and conv_mn_std_dev input
parameters were also added.

 * With version 1.31, the conv_criterion, conv_factor, gdissim_crit, and
gstd_dev_crit parameters were eliminated, the rconv_critlist parameter
was renamed to rthreshlist, and the gdissim parameter was added.
* With version 1.30, the min_npixels_pct parameter was replaced with
min_npixels. Also, the default values if split_pixels_factor,
seam_threshold_factor and region_threshold_factor were changed and a
new dissimilarity criterion (SAR Speckle Noise) was added. Some other
changes were made to improve processing efficiency.

RHSEG User’s Manual Version 1.46

27

* New parameter added with version 1.28: init_threshold.
* New parameters added with version 1.20: nslices, scale, and offset
(rlblmap_mask_value was removed).
* Parameters revised with version 1.20: spclust_wght, dissim_crit,
conn_type, normind, conv_criterion, and gdissim_crit. The parameter
spatial_wght was renamed to be std_dev_wght.
* New parameter added with version 1.10: ionb_levels.

NOTE: In the following discussion, most parameters are valid for both HSEG and
RHSEG. However some parameters are not valid for HSEG. See the on-line help for
HSEG (hseg –h) to determine whether or not a parameter is valid for HSEG

The input image data file name must be specified in the input parameter file:

input_image (string) Input image data file name

The input image data file from which hierarchical image segmentation is to be
produced.

For “rhseg_run,” this image data file is assumed to be a headerless binary 1-, 2-,
or 3-spatial dimension image or image-like data file in band sequential format.
This means that the column index increments that fastest, followed by the row
index, followed by the slice index, followed by the spectral band index. The
number of columns, rows, slices, spectral bands and the data type are specified by
other required parameters (see below). Data types “unsigned char (byte),” “short
unsigned int,” and “float” are supported (see dtype below).

For “rhseg_setup,” “rhseg” and “hseg” this image data file is assumed to be in
one of the wide variety of image data formats supported by GDAL (Geospatial
Data Abstraction Library – see http://www.gdal.org/).

For “rhseg_run” (but not for “rhseg_setup,” “rhseg” or “hseg”) the following
parameters must also be specified (no defaults):

ncols (int) Number of columns in the input image data
 (0 < ncols < 65535)

nrows (int) Number of rows in the input image data
 (0 < nrows < 65535)

nslices (int) Number of slices in the input image data
 (Only for the 3-D version) (0 < nslices < 65535)

nbands (int) Number of spectral bands in input image data
 (0 < nbands < 65535)

dtype (string) Data type of input image data:

 dtype = UInt8 designates “unsigned char (byte)”
 dtype = UInt16 designates “short unsigned int”
 dtype = Float32 designates “float”
 (otherwise undefined)

http://www.gdal.org/�

RHSEG User’s Manual Version 1.46

28

The following input image data files may also be specified in the input parameter file:

mask (string) Input data mask file name (default = {none})

The optional input data mask must match the input image data in number of
columns and rows. Even if the input image data has more than one spectral band,
the input data mask need only have one spectral band. If the input data mask has
more than one spectral band, only the first spectral band is used and is assumed to
apply to all spectral bands for the input image data. If the data value of the input
data mask is not equal to mask_value (see the next parameter definition), the
corresponding value of the input image data object is taken to be a valid data
value. If the data value of the input data mask object is equal to mask_value, the
corresponding value of the input image data object is taken to be invalid and a
region label of “0” is assigned to that spatial location in the output region label
map data. For “rhseg_run,” the input data mask data type is assumed to be
“unsigned char (byte).” Otherwise, the GDAL supported format input data mask
is converted, as necessary, to “unsigned char (byte).”

mask_value (int) If input data mask file is provided, this is the value
 in the mask file that designates bad data. Otherwise
 this is the value in the input data that designates
 bad data. (If mask file provided, default = 0 for.
 “rhseg_run,” and the input image data format
 specified value otherwise. No default if no mask
 file is provided.)

region_map_in (string) Input region label map file name.
 (default = {none})

The optional region label map must match the input image data in number of
columns and rows (and slices for 3-D). If provided, the image segmentation is
initialized according to the input region label map instead of the default of each
pixel as a separate region. Wherever a region label of “0” is given by the input
region label map, the region labeling is assumed to be unknown and the region
label map is initialized to one-pixel regions at those locations (except see
mask_value above). For “rhseg_run,” the input region label map data type is
assumed to be “short unsigned int.” Otherwise, the GDAL supported format input
region label map is converted, as necessary, to “short unsigned int.”

The following parameters must also be specified:

spclust_wght (float) Relative importance of spectral clustering versus
 region growing
 (0.0 ≤ spclust_wght ≤ 1.0, no default)

RHSEG User’s Manual Version 1.46

29

dissim_crit (int) Dissimilarity criterion

1. “1-Norm,”
2. “2-Norm,”
3. “Infinity Norm,”
4. “Spectral Angle Mapper,”
5. “Spectral Information Divergence,”
6. “Square Root of Band Sum Mean Squared

Error,”
7. “Square Root of Band Maximum Mean Squared

Error,”
8. “Normalized Vector Distance,”
9. “Entropy,”
10. “SAR Speckle Noise.”

(default: 6 “Square Root of Band Sum Mean Squared Error”)

Criterion for evaluating the dissimilarity of one region versus another.

Dissimilarity criteria 1, 2 and 3 are based on vector norms. The 1-Norm of the
difference between the region mean vectors, ui and uj, of regions Xi and Xj, each
with B spectral bands, is:

 ,
1

1 ∑
=

−=−
B

b
jbibji uu µµ (4-1a)

where μib and μjb are the mean values for regions i and j, respectively, in spectral
band b, i.e., ui = (µi1, µi2, …, µiB)T and uj = (µj1, µj2, …, µjB)T. The dissimilarity
function for regions Xi and Xj, based on the vector 1-Norm, is given by:

 d1-Norm () .,
1jiji uuXX −= (4-1b)

The vector 2-Norm of the difference between the region mean vectors, ui and uj,
of regions Xi and Xj is:

 () ,
2

1

1

2

2

−=− ∑

=

B

b
jbibji uu µµ (4-2a)

The dissimilarity function for regions Xi and Xj, based on the vector 2-Norm, is
given by:

 d2-Norm () .,
2jiji uuXX −= (4-2b)

The vector ∞-Norm of the difference between the region mean vectors, ui and uj,
of regions Xi and Xj is:

 (),,,2,1,max Bbuu jbibji =−=−
∞

µµ (4-3a)

RHSEG User’s Manual Version 1.46

30

The dissimilarity function for regions Xi and Xj, based on the vector ∞-Norm, is
given by:

 d∞-Norm () .,
∞

−= jiji uuXX (4-3b)

Dissimilarity criterion 4 is the Spectral Angle Mapper (SAM) criterion, which is
widely used in hyperspectral image analysis [1]. This criterion determines the
spectral similarity between two spectral vectors by calculating the “angle”
between the two spectral vectors. An important property of the SAM criterion is
that poorly illuminated and more brightly illuminated pixels of the same color will
be mapped to the same spectral angle despite the difference in illumination. The
spectral angle θ between the region mean vectors, ui and uj, of regions Xi and Xj is
given by:

 () =

=

22

arccos,
ji

ji
ji uu

uu
uu

θ

 .arccos 21

1

2
21

1

2

1

 ∑∑

∑

==

=

B

b
jb

B

b
ib

B

b
jbib

µµ

µµ
 (4-4a)

The dissimilarity function for regions Xi and Xj, based on the SAM distance vector
measure, is given by:

 dSAM() ().,, jiji uuXX θ= (4-4b)

Note that the value of dSAM ranges from 0.0 for similar vectors up to π/2 for the
most dissimilar vectors.

Dissimilarity criterion 5 is the Spectral Information Divergence (SID) criterion,
which is derived from the concept of divergence in information theory, and
measures the discrepancy of probabilistic behaviors between two spectral
signatures [2, 3]. It is based on a process that models the region mean vector, ui,
of region Xi as a random variable. Although the assumption of this model do not
necessarily hold true for most images, the effect of the violation is negligible [4].
Noting that, for image data, the elements of ui are nonnegative, a probability
measure for ui can be defined as

 () ,

1
∑

=

= B

b
ib

ib
ib uq

µ

µ (4-5a)

where ui = (µi1, µi2, …, µiB)T as before. This being the case, the entropy of the
region mean vector, ui, of region Xi is

 () () ()[].logH
1

ibi

B

b
bi uququ ∑

=

−= (4-5b)

RHSEG User’s Manual Version 1.46

31

The relative entropy of the region mean vector, uj, of region Xj with respect to the
region mean vector, ui, of region Xi with can be defined by

 () () ()[] ()[]{ }=−−= ∑
=

ibjbi

B

b
bji uquququu loglog||K

1

 () ()
() .log

1

∑

= jb

ib
i

B

b
b uq

uquq (4-5c)

K(ui||uj) in (4-5c) is also known as the Kullback-Leibler information measure [5].
The symmetric hyperspectral measure, SID, can be defined using (4-5c) by

 () () () () ()
() () ()

() .loglog||K||K,SID
1

∑
=

+

=+=

B

b ib

jb
jb

jb

ib
ibijjiji uq

uq
uq

uq
uququuuuuu (4-5d)

The dissimilarity function for regions Xi and Xj, based on the SID vector measure,
is given by:

 dSID() ().,SID, jiji uuXX = (4-5e)

Dissimilarity criteria 6 and 7 are based on minimizing the increase of mean
squared error between the region mean image and the original image data. The
sample estimate of the mean squared error for the segmentation of band b of the
image X into R disjoint subsets X1, X2, …, XR is given by:

 () (),
1

1
1

∑
=−

=
R

i
ibb XMSE

N
XMSE (4-6a)

where N is the total number of pixels in the image data and

 () ()∑
∈

−=
ip Xx

ibpbib XMSE 2µχ (4-6b)

is the mean squared error contribution for band b from segment Xi. Here, xp is a
pixel vector (in this case, a pixel vector in data subset Xi), and χpb is the image
data value for the bth spectral band of the pixel vector, xp. A dissimilarity function
based on a measure of the increase in mean squared error due to the merge of
regions Xi and Xj is given by:

 dBSMSE() (),,,
1

∑
=

∆=
B

b
jibji XXMSEXX (4-7a)

where

 ∆MSEb(Xi,Xj) = MSEb(XiXj) - MSEb(Xi) - MSEb(Xj) . (4-7b)

BSMSE refers to “band sum MSE.” Instead of summing over the bands in (4-7a)
one could take the maximum over the spectral bands, resulting in a “band
maximum MSE:”

RHSEG User’s Manual Version 1.46

32

 dBMMSE() (){ }.,2,1,,max, BbXXMSEXX jibji =∆= (4-7c)

Using (4-6b) and exchanging the order of summation, (4-7b) can be manipulated
to produce an efficient dissimilarity function based on aggregated region features:

() [] [] [] =

−−−−−=∆ ∑∑∑

∈∈∈ jpipijp Xx
jbpb

Xx
ibpb

Xx
ijbpbjib XXMSE 222, µχµχµχ

() ()[] () ()[] =

−−−+−−− ∑∑

∈∈ jpip Xx
jbpbijbpb

Xx
ibpbijbpb

2222 µχµχµχµχ

[]

[] =

−+−+−

+−+−+−

∑

∑

∈

∈

jp

ip

Xx
jbjbpbpbijbijbpbpb

Xx
ibibpbpbijbijbpbpb

2222

2222

22

22

µµχχµµχχ

µµχχµµχχ

=

−++−

−++−

∑∑

∑∑

∈∈

∈∈

22

22

22

22

jbj
Xx

pbjbijbj
Xx

pbijb

ibi
Xx

pbibijbi
Xx

pbijb

nn

nn

jpjp

ipip

µχµµχµ

µχµµχµ

=

−++−

−++−
222

222

22

22

jbjjbjijbjijbjbj

ibiibiijbiijbibi

nnnn

nnnn

µµµµµ

µµµµµ

() ()=+−++− 2222 22 ijbijbjbjbjijbijbibibi nn µµµµµµµµ

 () () .22
ijbjbjijbibi nn µµµµ −+− (4-8a)

where μijb is the mean value for the bth spectral band of the mean vector, uij, of
region represented by Xij = XiXj.

Since

 ,
ji

jbjibi
ijb nn

nn
+

+
=

µµ
µ (4-8b)

an alternate form for Equation (4-8a) is:

∆MSEb(Xi,Xj) =

() () =−+− 22
ijbjbjijbibi nn µµµµ

=+−++− 2222 22 jbjijbjbjijbjibiijbibiijbi nnnnnn µµµµµµµµ

() () 222 2 ijbjiijbjbjibijbjibi nnnnnn µµµµµµ +++−+

()()() () ()[]=+++−++
+

2222 21
jbjibijbjibijbjibiji

ji

nnnnnnnn
nn

µµµµµµ

()()() ()[]=+−++
+

2221
jbjibijbjibiji

ji

nnnnnn
nn

µµµµ

RHSEG User’s Manual Version 1.46

33

()()=−−−+++
+

2222222222 21
jbjjbibjiibijbjibjijbjiibi

ji

nnnnnnnnnn
nn

µµµµµµµµ

()()=−+
+ jbibibjb

ji

ji

nn
nn

µµµµ 222

()() .2

jbib
ji

ji

nn
nn

µµ −
+

 (4-8c)

Combining Equations (4-7a) and (4-8c),

 dBSMSE() () () .,
1

2∑
=

−
+

=
B

b
jbib

ji

ji
ji nn

nn
XX µµ (4-9a)

Similarly combining Equations (4-7c) and (4-8c),

 dBMMSE
() () (){ }.,,2,1:max, 2 Bb

nn
nn

XX jbib
ji

ji
ji =−

+
= µµ (4-9b)

The dimensionality of the dBSMSE and the dBMMSE dissimilarity criteria is equal to
the square of the dimensionality of the image pixel values, while the
dimensionality of the vector norm based dissimilarity criteria is equal to the
dimensionality of the image pixel values. To keep the dissimilarity criteria
dimensionalities consistent, HSEG uses the square root of these dissimilarity
criteria. The “Square Root of Band Sum Mean Squared Error” criterion is:

 () () () ,,d
2

1

1

22
1

BSMSE

−

+
= ∑

=

B

b
jbib

ji

ji
ji nn

nn
XX µµ (4-10a)

and the “Square Root of Band Sum Maximum Squared Error” criterion is:

 () () (){ } .,,2,1:max,d
2

1

22
1

=−

+
= Bb

nn
nn

XX jbib
ji

ji
jiBMMSE µµ (4-10b)

Dissimilarity criterion 8, the Normalized Vector Distance (NVD), is taken from
papers by Baraldi and Parmiggiani [6, 7]. The NVD is based on a combination of
a vector modulus measure (such as the 2-norm of the vector) with the previously
defined SAM criterion (4-4a). Under this criterion, two vectors are considered to
be equal if they have the same modulus (i.e., 2-norm) and the spectral angle
between them is zero.

As before, let ui and uj be the mean vectors of regions Xi and Xj, respectively.
Define

 () =

=
2

2

2

2
1 ,min,

i

j

j

i
ji u

u

u
u

uuσ

RHSEG User’s Manual Version 1.46

34

 .,min 21

1

2

21

1

2

21

1

2

21

1

2

∑

∑

∑

∑

=

=

=

=

B

b
ib

B

b
jb

B

b
jb

B

b
ib

µ

µ

µ

µ
 (4-11a)

Note that 0.0 ≤ σ1(ui,uj) ≤ 1.0 and 0.0/0.0 is defined to equal 1.0. Here, similar
length vectors will have σ1 close to 1.0 and dissimilar vectors will have σ1 close to
0.0.

The spectral angle θ between the region mean vectors, ui and uj, of regions Xi and
Xj was defined earlier in (4-4a). Define

 () ()()
2

,2
,2 π

θπ
σ ji

ji

uu
uu

−
= (4-11b)

as the normalized spectral angle between the vectors ui and uj. Note that 0.0 ≤
σ2(ui,uj) ≤ 1.0 and that similar length vectors will have σ2 close to 1.0 and
dissimilar vectors will have σ2 close to 0.0. The NVD dissimilarity criterion is
then defined as:

 dNVD() () ().,,0.1, 21 jijiji uuuuXX σσ−= (4-11c)

Note that 0.0 ≤ dNVD ≤ 1.0 and that similar length vectors will have dNVD close to
0.0 and dissimilar vectors will have dNVD close to 1.0.

The Entropy criterion, dissimilarity criterion 9, was first defined by Tilton [8].
The basic idea behind the Entropy criterion is to minimize the change of entropy
between the existing region mean image and the region mean image created after
a pair of regions merge. For the previously defined Spectral Information
Divergence criterion, we defined a probability measure for a pixel element by
normalizing the pixel element value by the sum of the pixels at that location over
all spectral bands. However, for the Entropy criterion, we define a probability
measure for a pixel element, χpb, by normalizing the pixel element value by the
sum over all pixels for a particular spectral band over all image pixels:

 ()
∑

=

= N

p
pb

pb
pb xq

1

'

χ

χ
, (4-12)

where xp = (χp1, χp2, …, χpB)T. Then, entropy of band b (out of B spectral bands)
of the image X is then given by

 () () ()[] =

−=−= ∑∑

== b

pb
N

p b

pb
pbp

N

p
bb NMNM

xqxqX
χχ

loglogH
1

'

1

'

 () ()[] () ().log1logloglog
11

∑∑
==

−=−

−

N

p
pbpb

b
b

N

p
bpb

b

pb

NM
NMNM

NM
χχχ

χ
 (4-13a)

RHSEG User’s Manual Version 1.46

35

where Mb is the mean value of spectral band b over all N image pixels. The total
multispectral entropy is taken to be

 () ().HH
1

XX
B

b
b∑

=

= (4-13b)

This summation is strictly true only if all spectral bands are uncorrelated, which is
generally not the case. Notwithstanding this statistical technicality, this
summation still leads to a useful dissimilarity criterion for multispectral (and
hyperspectral) data.

For a particular pair of regions Xi and Xj, with mean vectors, ui and uj,
respectively, let ∆H(ui,uj) be the change in H(X) for the multispectral region mean
image formed after the pair of regions is merged as compared to the region mean
image before the merge:

 () () () () =

−−−=∆ ∑ ∑∑∑

= ∈∈∈

B

b Xx
jbjb

Xx
ibib

Xx
ijbijb

b
ji

jpipijp
MN

uu
1

logloglog11,H µµµµµµ

 () () () ()[].logloglog11
1

∑
=

+−+
B

b
ijbijbjijbjbjibibi

b

nnnn
MN

µµµµµµ (4-14a)

where the µijb are the elements of the mean vector uij = (µij1, µij2, …, µijB)T and ni
(nj) is the number of pixels in region Xi (Xj). Noting that the factor N has no effect
on dissimilarity comparisons, the Entropy criterion is defined as:

 dENT() ()=∆= jiji uuNXX ,H,

 () () () ()[].logloglog1
1

∑
=

+−+
B

b
ijbijbjijbjbjibibi

b

nnnn
M

µµµµµµ (4-14b)

If the data is normalized so as to have equal mean values across the bands (see the
discussion for the normind parameter below), the Mb factor can also be dropped:

 () () () () ()[].logloglog,d
1

' ∑
=

+−+=
B

b
ijbijbjijbjbjibibijiENT nnnnXX µµµµµµ (4-14c)

Note that µijb can easily be calculated using (4-8b) above.
Dissimilarity criterion 10 is based on the “SAR Speckle Noise Criterion” from a
paper by J.-M. Beaulieu [9].The criterion is:

 () ()
()

()∑
= +

+−

+
=

B

b jbjibi

jijbib

ji

ji
jiSAR nn

nn
nn

nn
XX

1

2
1

*
,d

µµ

µµ

 ()() (),1

2
1 ∑

= +

−
+=

B

b jbjibi

jbib
jiji nn

nnnn
µµ

µµ
 (4-15)

NOTE: Other dissimilarity criterion can be included as additional options without changing the nature of
the RHSEG implementation.

RHSEG User’s Manual Version 1.46

36

log (string) Output log file (no default)

At a minimum (for debug = 1), the output log file records program parameters and
the number of regions and maximum merge ratio value for each level of the
region segmentation hierarchy.

The following optional parameters specify the scaling of the input image data:

scale (double) Comma delimited list of input data scale factors
 (specify one value per band, default = 1.0 for each band)

offset (double) Comma delimited list of input data offset factors
 (specify one value per band, default = 0.0 for each band)

The optional scale and offset values were added to accommodate the input of
MODIS data into RHSEG. The MODIS multispectral data are normally stored in
scaled short integer format, with scale and offset factors provided to rescale the
data into calibrated reflectance or radiance values. These scale and offset values
are used in the following manner to scale the input image data (input_image) for
each band:

scaled_input_image[band] = scale[band]*(input_image[band] – offset[band])

The following parameters specify output files (with default names):

class_labels_map (string) Output region class labels map data file name
 (default = ‘input_image’_class_labels_map)

The region class labels map at the finest level of segmentation detail (hierarchical
level 0). Together with region_classes (see below), this forms the main output of
RHSEG. Region class label values of “0” correspond to invalid input data values
in the input image data. Valid region label values range from 1 through
4,294,967,295. The data is of data type “unsigned int,” and the rows and columns
(and slices for 3-D) of class_labels_map correspond to the rows and columns (and
slices for 3-D) of the input image data.

boundary_map (string) Output hierarchical boundary map file name
 (default = {none})

The hierarchical boundary map is an optional output of RHSEG. The data values
of this map are (of type unsigned char (byte)), and the rows and columns (and
slices for 3-D) of boundary_map correspond to the rows and columns (and slices
for 3-D) of the input image data. The data values of the boundary map correspond
to the last hierarchical level (plus one) at which the image pixel was last on the
boundary of a region.

region_classes (string) Output region classes file name
 (default = ‘input_image’_region_classes)

The region classes file contains selected information about each region class at
each hierarchical level. The information includes the “region merges list” and
“region number of pixels” feature values, plus various region features as selected
by the region_sum, region_std_dev, region_boundary_npix, region_threshold,
region_nb_objects, and region_objects_list parameters (see below).

RHSEG User’s Manual Version 1.46

37

The region merges list feature consists of the renumberings of the region class
labels map required to obtain the region class labels map for the second most
detailed level (hierarchical level 1) through the coarsest (last) level of the
segmentation hierarchy from the class_labels_map (see above). The data is stored
as rows of values, with the column location (with counting starting at 1)
corresponding to the region class labels value in the class_labels_map (the region
class labels map at the finest level of detail in the segmentation hierarchy) and the
row location corresponding to the segmentation hierarchy level (the lth row
contains the renumberings required to obtain the (l+1)th level of the segmentation
hierarchy).

The region number of pixels feature consists of the number of pixels in each
region class stored as rows of values, with the column location (with counting
starting at 1) corresponding to the region class label value and the row location
corresponding to the segmentation hierarchy level (with counting starting at 0).

oparam (string) Output parameter file name
 (default = ‘input_image’.oparam)

The output parameter file contains (in ascii form) all the output parameters from
RHSEG. This parameter file is formatted in the same way as the input parameter
file for RHSEG and contains most of the same parameters. Additional parameters
are the number of hierarchical segmentation levels (nb_levels) in the hierarchical
segmentation output and the number of regions (level0_nregions) in the
hierarchical segmentation with the finest segmentation detail. These additional
parameter values are required to interpret the region_classes output file and the
optional region_objects output file (see below).

When spclust_wght > 0.0, the following optional parameters may be used to output
information on the region objects contained in each region class (no defaults, and ignored
if spclust_wght = 0.0 or if both of these optional parameters are not specified):

object_labels_map (string) Output region object labels map data file name
 (optional)

The region object labels map at the finest level of segmentation detail
(hierarchical level 0). Region object label values of “0” correspond to invalid
input data values in the input image data. Valid region label values range from 1
through 4,294,967,295. The data is of data type “unsigned int,” and the rows and
columns (and slices for 3-D) of object_labels_map correspond to the rows and
columns (and slices for 3-D) of the input image data.

region_objects (string) Output region objects file name (optional)

The region objects file contains selected information about each region object at
each hierarchical level. The information includes the “region merges list” and
“region number of pixels” feature values, plus various region features as selected
by the region_sum, region_std_dev and region_boundary_npix parameters (see
below).

The region merges list feature consists of the renumberings of the region object
labels map required to obtain the region object labels map for the second most

RHSEG User’s Manual Version 1.46

38

detailed level (hierarchical level 1) through the coarsest (last) level of the
segmentation hierarchy from the object_labels_map (see above). The data is
stored as rows of values, with the column location (with counting starting at 1)
corresponding to the region object labels value in the object_labels_map (the
region object labels map at the finest level of detail in the segmentation hierarchy)
and the row location corresponding to the segmentation hierarchy level (the lth
row contains the renumberings required to obtain the (l+1)th level of the
segmentation hierarchy).

The region number of pixels feature consists of the number of pixels in each
region object stored as rows of values, with the column location (with counting
starting at 1) corresponding to the region object label value and the row location
corresponding to the segmentation hierarchy level (with counting starting at 0).

The following parameters select the optional contents of the required output
region_classes file and the optional output region_objects file (above):
region_sum (bool) Region sum feature inclusion flag
 (true (1) or false (0), default = true if nbands < 20,
 default = false otherwise)

When this flag is true, the region sum feature values for each spectral band are
stored in the region_classes file (and region_objects file, if specified). When
available, the region sum squared values and the sum of the product of the region
values times the log of the region values are also stored.

region_std_dev (bool) Region standard deviation inclusion flag
 (true (1) or false (0), default = false. User provided
 value ignored and set to false if std_dev_wght = 0.0)

When this flag is true, the region standard deviation feature values are stored in
the region_classes file (and region_objects file, if specified). Here the region
standard deviation feature is defined as the maximum over spectral bands of the
region mean normalized standard deviation for each region. See the discussion of
the std_dev_wght parameter (below) for more information on this feature.

region_boundary_npix (bool) Region boundary number of pixels inclusion flag
 (true (1) or false (0), default = false)

When this flag is true, the region number of boundary pixels feature values are
stored in the region_classes file (and region_objects file, if specified).

region_threshold (bool) Inclusion flag for the merge threshold for the most
 recent merge for each region class
 (true (1) or false (0), default = false)

When this flag is true, the merge threshold for the most recent merge for each
region class is stored in the region_classes file.

RHSEG User’s Manual Version 1.46

39

region_nb_objects (bool) Inclusion flag for the number of region objects
 contained in each region class
 (true (1) or false (0), default = false. User provided
 value ignored and set to false if std_dev_wght = 0.0)

When this flag is true, the number of region objects contained in each region class
is stored in the region_classes file.

region_objects_list (bool) Inclusion flag for the list of the labels of the region
 objects contained in each region class
 (true (1) or false (0), default = false. User provided
 value ignored and set to false if std_dev_wght = 0.0)

When this flag is true, the list of the labels of the region objects contained in each
region class is stored in the region_classes file.

The following optional parameters are recommended for variation by all users (defaults
provided):
conn_type (int) Neighbor connectivity type:

 One-dimensional case:

1. “Two Nearest Neighbors,”
2. “Four Nearest Neighbors,”
3. “Six Nearest Neighbors,”
4. “Eight Nearest Neighbors,”

 (default: 1. “Two Nearest Neighbors”)

based on the following neighborhood chart, where the focal pixel is marked “X”:

7 5 3 1 X 2 4 6 8

Using this chart, n Nearest Neighbors include pixels 1, 2, … n.

 Two-dimensional case:
1. “Four Nearest Neighbors,”
2. “Eight Nearest Neighbors,”
3. “Twelve Nearest Neighbors,”
4. “Twenty Nearest Neighbors,”
5. “Twenty-Four Nearest Neighbors,”

 (default: 2. “Eight Nearest Neighbors”)

based on the following neighborhood chart, where the focal pixel is marked “X”:

RHSEG User’s Manual Version 1.46

40

21 15 11 17 23

13 5 3 7 19

9 1 X 2 10

20 8 4 6 14

24 18 12 16 22

Using this chart, n Nearest Neighbors include pixels 1, 2, … n.

 Three-dimensional case:
1. “Six Nearest Neighbors,”
2. “Eighteen Nearest Neighbors,”
3. “Twenty-Six Nearest Neighbors,”

 (default: 3. “Twenty-Six Nearest Neighbors”)

based on the following neighborhood chart, where the focal pixel is marked “X”:

slice-1 Slice slice+1
19 11 23

 7 3 9

 22 14 26

15 5 17

 1 X 2

 18 6 16

25 13 21

 10 4 8

 24 12 20

Using this chart, n Nearest Neighbors include pixels 1, 2, … n.

chk_nregions (unsigned int) Number of region classes at which segmentation
 hierarchy output is initiated
 (2 ≤ chk_nregions < 65535, default = 64 if
 hseg_out_nregions and hseg_out_thresholds
 not specified)

hseg_out_nregions (unsigned int) The set of number of regions at which
 hierarchical segmentation output are made
 (a comma delimited list, default = {none})

hseg_out_thresholds (float) The set of merge thresholds at which
 hierarchical segmentation output are made
 (a comma delimited list, default = {none})

NOTE: chk_nregions, hseg_out_nregions, and hseg_out_thresholds are mutually
exclusive. If more than one of these is specified, the last one specified controls and the
previous specifications are ignored. However, hseg_out_nregions and
hseg_out_thresholds may not be specified for rnb_levels > 1.

conv_nregions (short unsigned int) Number of regions for final convergence (the
 iteration at which HSEG or RHSEG is terminated)
 (0 < conv_nregions < 65535, default = 2)

RHSEG User’s Manual Version 1.46

41

gdissim (boolean) Flag specifying whether or not the global
 dissimilarity value is output for each level of the
 output segmentation hierarchy
 (1 (true) or 0 (false), default = 0)

The dissimilarity criterion utilized is specified by the dissim_crit parameter
(above). The global dissimilarity is a measure of the quality of the image
segmentations based on the global dissimilarity of the region mean image versus
the original image data.

The global dissimilarity criteria 1, 2 and 3 are based on vector norms. The global
dissimilarity function, based on the vector 1-Norm, for the R region segmentation
of the N pixel data set X is given by:

 D1-Norm () .1
1

1∑ ∑
= ∈

−=
R

i Xx
ip

ip

ux
N

X (4-16)

where xp is the pth image pixel and ui is the region mean vector for region Xi.

The global dissimilarity function, based on the vector 2-Norm, for the R region
segmentation of the N pixel data set X is given by:

 D2-Norm () .1
1

2∑ ∑
= ∈

−=
R

i Xx
ip

ip

ux
N

X (4-17)

The global dissimilarity function, based on the vector ∞-Norm, for the R region
segmentation of the N pixel data set X is given by:

 D∞-Norm () .1
1

∑ ∑
= ∈

∞
−=

R

i Xx
ip

ip

ux
N

X (4-18)

The global dissimilarity criterion 4, based on the Spectral Angle Mapper (SAM)
criterion introduced previously, is given by:

 DSAM () () .arccos1,1
1 22

1
∑ ∑∑ ∑

= ∈= ∈

==

R

i Xx ip

ip
R

i Xx
ip

ipip ux
ux

N
ux

N
X

θ (4-22)

where θ(xp,ui) is the spectral angle between xp, the pth image pixel, and ui, the
region mean vector for region Xi.

The global dissimilarity criterion 5 is based on the Spectral Information
Divergence (SID) criterion introduced previously. The entropy of the pth image
pixel, xp, and the entropy of the region mean vector, ui, for region Xi are defined
as

()
∑

=

= B

b
pb

pb
pb xq

1
χ

χ
and ()

∑
=

= B

b
ib

ib
ib uq

1
µ

µ ,

respectively, where xp = (χp1, χp2, …, χpB)T and ui = (µi1, µi2, …, µiB)T. Then

RHSEG User’s Manual Version 1.46

42

 () () ()
() () ()

() .loglog1D
1 1

∑ ∑ ∑
= ∈ =

+

=

R

i Xx

B

b pb

ib
ib

ib

pb
pbSID

ip
xq
uquq

uq
xq

xq
N

X (4-19)

The global dissimilarity criteria 6 and 7 are based on the square root of the mean
squared error between the region mean image and the original image data. With
the mean square error for spectral band b as given in (4-6a) and (4-6b), the global
dissimilarity criterion “Square Root of Band Sum Mean Squared Error” is:

() () ()
2

1

1 1

22
1

1
1D

−

−
= ∑ ∑ ∑

= = ∈

B

b

R

i Xx
ibpbBSMSE

ip
N

X µχ

 () .
1

1
2

1

1 1

22

−

−
= ∑∑ ∑

= = ∈

R

i

B

b
ibi

Xx
pb n

N
ip

µχ (4-20)

Similarly, the global dissimilarity criterion “Square Root of Band Maximum
Mean Squared Error” is:

 () .max
1

1D

2
1

1

22

1
2

1

−

−
= ∑ ∑

= ∈=

R

i
ibi

Xx
pb

B

bBMMSE n
N

ip

µχ (4-21)

Global dissimilarity criterion 8 is based on the Normalized Vector Distance
(NVD) introduced previously. Let xp be the pth image pixel and ui be the region
mean vector for region Xi. Then define

 ()

=
2

2

2

2
1 ,min,

p

i

i

p
ip x

u
u
x

uxσ and () ()()
2

,2
,2 π

θπ
σ ip

ip

ux
ux

−
= , (4-22a)

where θ(xp,ui) is the spectral angle between xp, the pth image pixel, and ui, the
region mean vector for region Xi (see (4-4a) and (4-22)). Then the NVD global
dissimilarity criterion is given by

 () () ()[].,,0.11D
1

21NVD ∑ ∑
= ∈

−=
R

i Xx
ipip

ip

uxux
N

X σσ
 (4-22b)

Global dissimilarity criterion 9 is a measure of how much the entropy of the
region mean image differs from the original image data. Using the notation
defined previously, the total multispectral entropy of the image, X, is given by

 () () () =

−= ∑ ∑

= =

B

b

N

p
pbpb

b
b NM

NMX
1 1

log1logH χχ

 () ()∑ ∑ ∑
= = ∈

−

B

b

R

i Xx
pbpb

b
b

ip
NM

NM
1 1

log1log χχ (4-23a)

RHSEG User’s Manual Version 1.46

43

where the summation over the N image pixels is reordered to sum over the groups
of pixels in each of the regions in an R region segmentation. Similarly, the total
multispectral entropy of the region mean image of an R region segmentation of
the image, X, is given by

 () () ()∑ ∑
= =

−=

B

b

R

i
ibibi

b
bR n

NM
NMX

1 1
log1logH µµ (4-23b)

The increase in image entropy of the R region mean image over that of the
original data is then DENT(X) = HR(X) – H(X), or (after changing the order of
summation)

 () ()[] () .loglog11D
1 1

∑ ∑ ∑
= = ∈

−=
R

i

B

b
ibibi

Xx
pbpb

b
ENT n

MN
X

ip

µµχχ (4-24)

The global dissimilarity criterion 10 is based on the SAR Speckle Noise criterion.
The global dissimilarity function, based on the SAR Speckle Noise criterion, for
the R region segmentation of the data set X is given by:

 DSAR () ()() () .
1 1

2
1∑ ∑ ∑

= ∈ =

+

−
+=

R

i Xx

B

b jbjpb

jbpb
jiji

ip
n

nnnnX
µχ

µχ
 (4-25)

where xp is the pth image pixel and ui is the region mean vector for region Xi.

The default values should be used for the following optional parameters, except in special
circumstances (defaults provided):

debug (int) Debug option (debug ≥ 0, default = 1)

normind (short unsigned int) Image normalization type

1. “No Normalization,”
2. “Normalize Across Bands,”
3. “Normalize Bands Separately”

 (default: 2. “Normalize Across Bands”)

Let χpb be the original value for the pth pixel (out of N pixels) in the bth band (out
of B bands). The sample mean and sample variance of the bth band are

 () ,
1

1and1
1

22

1
∑∑

==

−
−

==
N

p
bpbb

N

p
pbb NN

µχσχµ (4-26)

respectively. The following transformation of the data, χpb, will produce image
data, ξpb, with mean, Μ, and standard deviation, Σ:

 () (),''
bpbbbpb

b
pb Μ−Σ=Μ+

−

Σ
= χµχ

σ
ξ (4-27a)

where

RHSEG User’s Manual Version 1.46

44

 .and ''

Σ
Μ−=Μ

Σ
=Σ b

bb
b

b
σ

µ
σ

 (4-27b)

For convenience, for most dissimilarity criteria, the data is normalized by default
such that Σ2(=Σ)=1, and Μ=0. However the Spectral Angle Mapper, Spectral
Information Divergence, Normalized Vector Distance and Entropy assume that all
data values are nonnegative. Moreover, to avoid the singularity at log(0.0) for the
Spectral Information Divergence and Entropy criteria, all data values should be
strictly positive (i.e., all greater than zero) in these cases. Due to these
considerations, the default value of M is set such that the overall normalized
minimum value is 0.0 for the Spectral Angle Mapper and Normalized Vector
Distance criteria, and the default value of M is be set such that the overall
normalized minimum value is 1.0 for the Spectral Information Divergence and
Entropy criteria.

As written above, the normalization is applied to each spectral band separately. It
can also be defined to apply equally across all spectral bands. For this case, use

{ }Bbb ,,2,1:max == σσ in (4-27a) and (4-27b). However, this choice of
normalization will produce the same hierarchical segmentation result as no
normalization at all.

init_threshold (float) Threshold for initial fast region merging by a
 region oriented first merge process adapted from
 an algorithm proposed by Muerle and Allen [10].
 (default = 0.0)

In this region scan version of first merge region growing, unmerged pixels are
visited in random order and designated as a new single pixel region. This new
region is grown by adding individual (unmerged) neighboring image pixels that
are similar enough to the growing region. After no more pixels can be added to a
particular region, a region is similarly grown from the next randomly selected
unmerged pixel. This process continues until no unvisited or unmerged pixels
remain.

The seminal first merge region growing approach of Muerle and Allen [10],
hereafter called MARG, utilizes a left to right, top to bottom scan to select the
next unmerged pixel from which to start growing a region. However, in the
adaptation of their algorithm that is utilized for initialization of HSEG and
RHSEG, a random scan order is used to select the next pixel. The adaptation of
MARG utilized herein is as follows:

1) Give all image pixels, xp, in image X (p = 1 to NP) region label 0, and
compute a random ordering, p’ = Rand(p), over the NP pixels. Set T as the
value of the merge threshold, p = 0, r = 0, and continue to step 2.
2) Set p = p + 1. If p > NP, exit (the segmentation result contains NR = r
regions). Otherwise, continue to step 3.
3) Select image pixel 'px , where p’ = Rand(p). If the image pixel 'px has

already been merged into a region (i.e, it has a region label other than 0),

RHSEG User’s Manual Version 1.46

45

return to step 2. Otherwise, set r = r + 1 and create region object or with
region label r, feature values computed from pixel 'px , and a pixel neighbor

list specifying the pixel index of unmerged neighboring pixels (i.e.,
neighboring pixels having region label 0). If the new region object or has no
unmerged neighboring pixels, give region label r to pixel 'px and return to step

2. Otherwise, randomly shuffle the ordering of the pixel indices in the pixel
neighbor list, give region label r to pixel 'px , and continue to step 4.

4) Successively compute the dissimilarity, d(or,xk), between region object or
and the unmerged neighboring pixels, xk, in the randomly shuffled pixel
neighbor list until a pixel is found that has d(or,xk) ≤ T, or all neighboring
pixels are checked. If d(or,xk) > T for all unmerged neighboring pixels, xk,
return to step 2. Otherwise, continue to step 5.
5) Merge the first found neighboring unmerged neighboring pixel, xk, with
d(or,xk) ≤ T into region object or by updating the region feature values and
neighbor pixel index list for region object or, and giving pixel xk region label
r. If the new region object or has no neighboring unmerge pixels, return to
step 2. Otherwise, randomly shuffle the ordering of the pixel indices in the
new pixel neighbor list, and return to step 4.

Besides the random order of seed pixel selection, the main difference between the
above algorithm and Muerle and Allen’s approach is in step 5 where the first
found unmerged neighboring pixel with dissimilarity less than or equal to T is
selected for merging from a randomly shuffled list of unmerged neighboring
pixels. It is not clear what scanning order Muerle and Allen used to select this
next found unmerged neighboring pixel, but it is unlikely that it was a random
ordering. Another difference is that Muerle and Allen initially aggregate the
image pixels into blocks sized anywhere from 2 × 2 to 8 × 8 before performing
region growing, whereas the initial regions in the above algorithm are single pixel
in size.

std_dev_wght (float) Weight for standard deviation spatial feature
 (std_dev_wght ≥ 0.0, default = 0.0)

The parameter std_dev_wght sets the weighting for the standard deviation feature.
The mean normalized standard deviation is used here instead of the usual standard
deviation feature. If D is the dissimilarity function value before combination with
the spatial feature value, the combined dissimilarity function value (comparing
regions i and j), Dc, is:

 () ,_*0.1*

+

−
+= dev_wghtstd

sdfsdf
sdfsdf

DD
ji

jic (4-28)

where sdfi and sdfj are the standard deviation feature values for regions i and j,
respectively.

RHSEG User’s Manual Version 1.46

46

The standard deviation feature employed here is the spectral band maximum,
mean normalized region standard deviation. For regions consisting of 2 or more
pixels, the mean normalized region standard deviation for spectral band b of
region i is:

() () ()

ib

ibi
Xx

pb
i

ib

Xx
ibpb

i
ib

n
nn ipip

µ

µχ

µ

µχ

σ

−

−
=

−
−

=

∑∑
∈∈

222

1
1

1
1

, (4-29a)

where ni is the number of pixels in the region and ibµ is the region mean for
spectral band b of region i:

∑
∈

=
ipx

pb
i

ib n χ

χµ 1 .

The standard deviation feature value for region i is then defined as:

 { }Bbsdf ibii ,,2,1:max === σσ (4-29b)

where B is the number of spectral bands.

The region standard deviation is not defined for regions consisting of only one
pixel. Further, the mean normalize region standard deviation as calculated by
equation (4-17a) can only be considered a rough estimate for small regions (say,
regions less than 9 pixels in size). Thus, if one of the regions being compared
consists of less than 9 pixels, the std_dev_wght factor is modified by a
std_dev_factor as follows:

 std_dev_wght’ = std_dev_factor*std_dev_wght, (4-30a)

where

 std_dev_factor =(min_npix-1.0)/8.0, (4-30b)
and min_npix is the number of pixels in the smaller of the two regions being
compared. Note that for min_npix = 1, std_dev_factor = 0.0. Thus, std_dev_factor
serves to gradually phase in the standard deviation spatial feature as the regions
get larger.

split_pixels_factor (float) Pixel splitting factor. A pixel will be split out from
 its current region if it is this factor more similar to
 another region than it is to its current region.
 (0.0 ≤= split_pixels_factor, default = 1.4. No pixel
 splitting is performed if split_pixels_factor < 1.0.)

For each region with a non-empty “candidate region label” set, compute the
dissimilarity of each pixel in that region to its current region (own_region_dissim)
and to each region in the region’s “candidate region label” set
(other_region_dissim). If a pixel is found to have own_region_dissim >
split_pixels_factor*other_region_dissim, the pixel is split out from its current

RHSEG User’s Manual Version 1.46

47

region. NOTE: The lower the value of split_pixels_factor, the more pixels are
split out from their regions (for split_pixels_factor ≥ 1.0).

seam_threshold_factor (float) This threshold factor is used in determining whether
 a region found across a processing window seam is
 to be considered in determining whether a pixel is
 to be split out of its current region.
 (1.0 <= seam_threshold_factor, default = 1.3. If
 threshold_factor = 1.0, no regions are selected by
 this method)

During the processing window elimination process, a “candidate region label” set
is accumulated for use in considering whether or not a pixel is to be split out of its
current region. Consider the data points that are in the pairs of rows and columns
along the seam between the data quadrants reassembled in step 2 of the RHSEG
algorithm. For each of these pixels calculate the dissimilarity between the pixel
and its current region (own_region_dissim), and calculate the dissimilarity
between the pixel and the region of the pixel across the seam
(other_region_dissim). If own_region_dissim > seam_threshold_factor*
other_region_dissim, add the region label of the region of the pixel across the
seam to the “candidate region label” set of the region the pixel belongs to.

NOTE: The lower the value of seam_threshold_factor, the more regions are
included in the “candidate region label” set.

region_threshold_factor (float) This threshold factor is used in determining which
 regions are to be considered in determining whether
 a pixel is to be split out of its current region.
 (0.0 < threshold_factor, default = 0.0.
 If region_threshold_factor = 0.0, no regions are
 selected by this method)

During the processing window elimination process, a “candidate region label” set
is accumulated for use in considering whether or not a pixel is to be split out of its
current region. Compare each region to every other region. If the dissimilarity
between a pair of regions is less than region_threshold_factor* max_threshold,
add each region label to the “candidate region label” set for the other region.
NOTE: max_threshold is the maximum merging threshold encountered in the
previous merging iterations. This factor is ignored for spclust_wght = 0.0. Also,
the higher the value of region_threshold_factor, the more regions are included in
the “candidate region label” set.

min_npixels (unsigned int) For regions smaller than this minimum number of pixels, the
 dissimilarity function is adjusted to favor merging.
 (0 <= min_npixels;
 for dissim_crit = 6, 7, 9 or 10: default = 0;
 for dissim_crit = 1, 2, 3, 4, 5 or 8: default = 200)

The value of min_npixels is used to calculate a merge acceleration factor, factor,
which is multiplied times the dissimilarity criterion value. For two regions of size

RHSEG User’s Manual Version 1.46

48

(number of pixels) n1 and n2, let Nmin = min_npixels and let Ni = min(ni, Nmin) for i
= 1,2. Then

()

()
() .

*
**2

*

*
2

1

21

21

2
1

2
1

21

21

+

=

+

+

=
NNN

NN

NN
NN

NN
NN

factor
min

minmin

minmin

 (4-31)

Note that if both n1 and n2 ≥ Nmin (=min_npixels), factor = 1.0.

rnb_levels (short unsigned int) Number of recursive levels

 (1 ≤ rnb_levels < 255, default calculated)
The number of recursive levels. The default is calculated such that the number of
data points in the subsections of data processed at recursion level rnb_levels is no
more than 4000 data points. The number of columns, rows and slices at recursion
level rnb_levels is sub_ncols = ncols/2rnb_levels-1, sub_nrows = max(1, nrows/
2rnb_levels-1, and sub_nslices = max(1, nslices/2rnb_levels-1).

ionb_levels (short unsigned int) Recursive level at which data I/O is performed

 (1 ≤ ionb_levels ≤ rnb_levels, default calculated)

The recursive level at which data I/O is performed and pixel oriented data is
maintained (sequential version only). Temporary data files are used to store the
pixel oriented data for each section of data that the image is divided into at this
recursive levels. The default value is ionb_levels = 1, unless the number of data
points exceeds 9,437,184 (=262,144*36), where the default is calculated such that
the number of data points in the subsections of data processed at recursion level
ionb_levels is no more than 262,144 (=5122) data points. The number of columns,
rows and slices at recursion level ionb_levels is ionb_ncols = ncols/2ionb_levels-1,
ionb_nrows = max(1, nrows/2ionb_levels-1), and ionb_nslices = max(1, nslices/
2ionb_levels-1).

Important note: RHSEG uses environmental variables to determine in what
directory the temporary files should be stored in. RHSEG first looks for the TMP
environmental variable, and if this does not exist, it looks for the TEMP
environmental variable, and if this does not exist, it looks for the TMPDIR
environmental variable, and if this does not exist, it assumes the temporary
directory is /tmp. To be sure RHSEG works as it should you should, set one of the
listed environmental variables to a directory that has sufficient disk space to hold
the temporary files. The space required will vary with data set characteristics and
parameter settings. You should monitor the free space available in the temporary
directory during your initial runs if your image contains more than 9,437,184
pixels (with the default parameter settings).

RHSEG User’s Manual Version 1.46

49

min_nregions (unsigned int) Number of regions for convergence in
 recursive stages
 (0 < min_nregions < 65,535, default calculated)

If not specified, the default is calculated to be min_nregions =
sub_ncols*sub_nrows*sub_nslices / DN2 , where ND is the number of spatial
dimensions (for sub_ncols, sub_nrows and sub_nslices see the rnb_levels
parameter).

spclust_start (short unsigned int) Number of regions at and below which spectral
 clustering is utilized. Otherwise, the spectral
 clustering step is skipped.
 (0 ≤ spectral_start < 65,535, default calculated)

The default for spclust_start is calculated such that spectral clustering is utilized
only part of the time when spclust_wght > 0.0. If spclust_wght = 0.0, spclust_start
= 0. Otherwise, spclust_start = spclust_wght*(max_nregions-min_nregions) +
min_negions, where max_nregions = max(DN2 *min_negions, sub_ncols*
sub_nrows*sub_nslices).

Guidance on HSEG/RHSEG Program Parameter Settings
The parameters that have the most effect on the nature of the segmentation results are
spclust_wght, dissim_crit and chk_nregions. The default values are recommended for the
other optional parameters for routine use of HSEG and RHSEG, with the exception that
specification of the output file name parameter boundary_map is also recommended. Of
course, if some input data elements are invalid, the some method of data masking should
also be employed.

The following paragraphs give some guidance on the setting of the spclust_wght,
dissim_crit and chk_nregions parameters:

spclust_wght: The user may want to vary the value of spclust_wght to modify the overall
nature of the segmentation results. For spclust_wght = 0.0, you will obtain relatively
coherent closed connected regions. For spclust_wght = 1.0, you will obtain relatively
variated regions consisting of possibly several spatially disjoint subsections. For other
values of spclust_wght you will obtain results intermediate the spclust_wght = 0.0 and
spclust_wght = 1.0 results.

dissim_crit: The user may also want to vary the value of dissim_crit to modify the overall
nature of the segmentation results. The different dissimilarity criterion will result in
different merge ordering.

chk_nregions: The user may want to vary the value of chk_nregions to vary the level of
segmentation detail in the most detailed level of the segmentation hierarchy. Higher
values will increase the detail (the segmentation will have more regions) and lower
values will decrease the detail (the segmentation will have fewer regions) and the most
detailed level of the segmentation hierarchy.

Varying the other optional parameter values away from the default values requires a
thorough understanding of the inner workings of the HSEG and RHSEG programs.

RHSEG User’s Manual Version 1.46

50

References
[1] F. A. Kruse, A. B. Lefkoff, J. W. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J.

Barloon, and A. F. H. Goetz, “The Spectral Image Processing System (SIPS) –
Interactive Visualization and Analysis of Imaging Spectrometer Data,” Remote
Sensing of Environment, Vol. 44, Nos. 2-3, pp. 145-163, May-June 1993.

[2] Chein-I Chang, “An Information-Theoretic Approach to Spectral Variability,
Similarity, and Discrimination for Hyperspectral Image Analysis,” IEEE
Transactions on Information Theory, Vol. 46, No. 5, pp.1927-1932, August 2000.

[3] J. C. Tilton,W. T. Lawrence, and A. J. Plaza, “Utilizing Hierarchical Segmentation
to Generate Water and Snow Masks to Facilitate Monitoring Change with Remotely
Sensed Image Data,” GIScience and Remote Sensing, Vol. 43, No. 1, pp. 39-66,
2006.

[4] Chein-I Chang, Hyperspectral Imaging: Techniques for Spectral Detection and
Classification, Kluwer Academic/Plenum Publishers: New York, 2003.

[5] Peter J. Bickel and Kjell A. Doksum, Mathematical Statistics: Basic Ideas and
Selected Topics, Holden-Dya, Inc.: San Francisco, 1977.

[6] A. Baraldi and F. Parmiggiani, “A Neural Network for Unsupervised Categorization
of Multivalued Input Patterns: An Application to Satellite Image Clustering,” IEEE
Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, pp. 305-316,
March 1995.

[7] A. Baraldi and F. Parmiggiani, “Single Linkage Region Growing Algorithms Based
on the Vector Degree of Match,” IEEE Transactions on Geoscience and Remote
Sensing, Vol. 34, No. 1, pp.137-147, January 1996.

[8] J. C. Tilton, “Experiences using TAE-Plus Command Language for an Image
Segmentation Program Interface,” Proceedings of the TAE Ninth Users’
Conference, New Carrollton, MD, pp. 297-312, Nov. 5-7, 1991.

[9] J.-M. Beaulieu, “Utilization of contour criteria in micro-segmentation of SAR
images,” International Journal of Remote Sensing, Vol. 25, No. 17, pp. 3497-3512,
Sept. 10, 2004.

[10] J. L. Muerle, D. C. Allen, “Experimental Evaluation of Techniques for Automatic
Segmentation of Objects in a Complex Scene,” in G. C. Cheng, et al. (Eds.),
Pictorial Pattern Recognition, Thompson, Washington, DC, pp. 3-13, 1968.

RHSEG User’s Manual Version 1.46

51

Chapter 5: HSEGViewer Tutorial

Overview
This chapter provides a tutorial on the HSEGViewer program.

HSEGViewer Tutorial
The demonstration version of RHSEG includes a sample data set which is by default
installed in the C:\Program Files\RHSEG\Sample Data directory. To provide inputs for
the HSEGViewer program, run the RHSEG program on the “girl.bmp” sample image
provided, using the provided “rhseg.params” input parameter file:

rhseg rhseg.params
With the specified set of parameters, the rhseg program should take a little over 1 minute
to run on a 2 GHz clock machine. When rhseg completes processing, you may run
HSEGViewer by entering the command:

hsegviewer
You may also run this version of HSEGViewer from “RHSEG” group in “Run Program”
in the “start” menu in Windows. If you like, you can create a shortcut for this program
and place it on your desktop.

The “Hierarchical Segmentation Results Viewer Parameter Input” GUI panel will now
appear. You will need to enter the HSEG/RHSEG output parameter file through this
panel. The easiest way to do this is to click on the file input box under the label “Input
HSEG Parameter File (oparam) for Input to HSEGViewer,” and then select the
“girl.oparam” file through the file selector. You will then have to enter the appropriate
values for Red, Green and Blue Display Bands. Since the girl image is an RGB image,
enter these values by typing the number 0 in the box to the right of the “Red Display
Band” label, the number 1 in the box to the right of the “Green Display Band” label, and
the number 2 in the box to the right of the “Blue Display Band” label.

(NOTE: If you are viewing a single-band image, enter the number 0 for all three “Display
Band” values – Red, Green and Blue.)

Now you are ready to run the HSEGViewer program. Click on the “Program Actions”
menu button at the top left of the panel and select “Run Program.” The main
“Hierarchical Segmentation Results Viewer” panel will then appear. You may resize this
panel as desired.

You may also run HSEGViewer by entering the command (using the provided
“hsegviewer.params” file):

hsegviewer hsegviewer.params
When running HSEGViewer in this manner, the main “Hierarchical Segmentation
Results Viewer” panel will then appear without further user input.

RHSEG User’s Manual Version 1.46

52

The main panel holds several buttons and value entry fields with a large table at the
bottom. Click on the “RGB Image” button. You will see an RGB rendition of the girl
image, with a main viewing panel and a reduced sized image in the upper left. For large
images, this reduced sized image will help you navigate to desired locations in your large
image. As with all other HSEGViewer panels, this panel has an “Actions” menu button in
the upper left corner. Click on this menu button and select “Zoom In.” The image data in
the “RGB Image” panel will now be displayed zoomed by a factor of two. You may view
the entire image by resizing the panel. Return to the original display resolution by
selecting “Zoom Out” from the “Actions” menu.

Now click on the “Current Region Labels” button on the main panel. You will now see
the “Current Region Labels” display panel, which is initially blank. Now enter the value
“1” in the text field to the right of the label “Select Pixels with Segmentation Level 0
Region Class Label” (you need to press the “Enter” key after typing “1” in the text field).
This will cause region class 1 at hierarchical level 0 to be highlighted in white in the
“Current Region Labels” panel. Region class 1 consists of several dark (mainly
shadowed) areas. You may highlight any specific region class in this way by entering in
the region class label value in this text box.

You can also highlight other region classes by clicking on any pixel in the RGB Image
panel, and then clicking the “Select Pixels with Segmentation Level 0 Region Class
Label” button on the main panel. Use this facility now by clicking on a bright yellow
pixel in the yellow flower and then clicking on “Select Region Class at Location of Last
Left Mouse Click” button on the main panel. If you clicked on the pixel I clicked on (at
column 170 and row 235), bright yellow portions of the yellow flower will be
highlighted. Looking at the table on bottom portion of the main panel, you should see
region class 63 listed with 171 pixels at hierarchical level 0. We can explore how this
region class changes at coarser levels of the segmentation hierarchy by clicking on the
“Select Next Coarser Segmentation” button on the main panel. Click on this button once
now.

You should now see that a larger portion of the yellow flower is added to the region at
hierarchical level three (you can tell that this region at hierarchical level three is being
highlighted by noting that the value “3” is being displayed in the text box between the
“Select Next Finer Segmentation” and “Select Next Coarser Segmentation” buttons).
Click on the “Select Next Coarser Segmentation” button once again, and you will see that
the pink flower is added to the yellow flower region at hierarchical level five. Clicking on
the “Select Next Coarser Segmentation” button a third time adds a number of non-flower
pixels, including areas in the window and the girl’s hair at hierarchical level eight.

You can also highlight region objects in the same way. Enter the value “1” in the text
field to the right of the label “Select Pixels with Segmentation Level 0 Region Object
Label.” This will cause region object 1 at hierarchical level 0 to be highlighted in white in
the “Current Region Labels” panel. Region object 1 is a single dark region in the lower
left corner of the image. You may highlight any specific region object in this way by
entering in the region object label value in this text box.

You can also highlight other region objects by clicking on any pixel in the RGB Image
panel, and then clicking the “Select Pixels with Segmentation Level 0 Region Object

RHSEG User’s Manual Version 1.46

53

Label” button on the main panel. Use this facility now by clicking on a bright yellow
pixel in the yellow flower and then clicking on “Select Region Object at Location of Last
Left Mouse Click” button on the main panel. If you clicked on the pixel I clicked on (at
column 170 and row 235), a small bright yellow portion of the yellow flower will be
highlighted. Looking at the table on bottom portion of the main panel, you should see
region object 4265 listed with 46 pixels at hierarchical level 0.

We can explore how this region object changes at coarser levels of the segmentation
hierarchy by clicking on the “Select Next Coarser Segmentation” button on the main
panel. Click on this button once now. You should now see that more of the yellow flower
is added to the region object at hierarchical level three. Click on the “Select Next Coarser
Segmentation” button once again, and you will see that the pink flower is added to the
yellow flower region at hierarchical level five. Clicking on the “Select Next Coarser
Segmentation” button a third time adds only five more flower pixels at hierarchical level
eight. However, clicking on the “Select Next Coarser Segmentation” button a fourth time
adds all of the rest of the yellow flower to the region at hierarchical level eleven.

Let’s go ahead and label this area “yellow flower” by clicking on the “Label Region”
button in the upper right corner of the main “Hierarchical Segmentation Results Viewer”
panel (we will correct the mislabeling of the pink flower in the next step).

You will now see the “Label Region Panel.” With this panel you can label a highlighted
region with a desired color, and associate that color with a text label. You can even
modify one of the pre-configured colors by clicking on one of the colors. Let’s go ahead
and do that by clicking on the bright yellow color button labeled “60:” towards the
bottom right of the panel.

You will now see a “Pick a color” panel. For example, you can select a different shade of
yellow by clicking somewhere on the triangle in the left part of the panel. Alternatively
you can provide specific HSB or RGB values in the provide text fields. Let’s change the
Blue value to 100 (to lighten the color a bit). Save this new color and exit this panel by
clicking on the “OK” button.

To label the highlighted area with your chosen color type in a label, such as “yellow
flower,” in the text box to the right of your chosen color. Hitting the “Enter” key while in
that text box will record your text label and label the highlighted region with your chosen
color. Now close the “Label Region Panel” by clicking on the “X” at the upper left corner
of the panel or by selecting “Close” from the “Action” menu.

Now go the RGB Image panel and select a pixel in the pink flower for highlighting. Do
this by performing a left mouse click in the middle of the pink flower in the “RBG
Image” and click on the “Select Region Class at the Location of Last Left Mouse Click”
button on the main panel. You should now have either region 59 or region 62 highlighted.
Looking at the bottom of the table on the main panel, you should see either region 59
listed with 120 pixels at hierarchical level 0 or region 62 listed with 120 pixels at
hierarchical level 0. Regions 59 and 62 combine at hierarchical level three to nicely cover
the pink flower. (Press the “Select Next Coarser Segmentation button once to get to
hierarchical level three.) Give this region a pink color and the label “pink flower” using
the “Label Region Panel.”

RHSEG User’s Manual Version 1.46

54

Now select an area on the girl’s red shawl for highlighting. Do this by clicking on a pixel
in the girl’s shawl and then clicking on the “Select Region Class at the Location of Last
Left Mouse Click” button. If you clicked on the pixel I clicked on (at column 90 and row
200), you should see that portions of the red shawl, plus part of the girl’s red lips are
highlighted. Click on the “Select Next Coarser Segmentation” button, and you will see
that portions of the red flower are added at hierarchical level three Clicking on the
“Select Next Coarser Segmentation” button again adds more red shawl and lip pixels at
hierarchical level four. Clicking this button a third time adds most of the rest of the red
shawl to the highlighted area at hierarchical level seven.

We can separate the girl’s red lips from the rest of the highlighted region by doing the
following. Select “Extract Region of Interest” from the “Program Control” menu of the
“Current Region Labels” panel, and draw a line surrounding the girl’s lips on the panel.
Now only the girl’s lips will be highlighted. Use the “Label Region” panel to label this
area “girl’s lips” with a shade of red.

Now perform a left mouse click in the middle of the green colored area on the girl’s right
shoulder (which is to the left in the image) in the “RBG Image” and click on the button
“Select Region Class at the Location of Last Left Mouse Click.” If you clicked on the
pixel I clicked on (at column 45 and row 235), you will now see portions of the girl’s
green blouse on both shoulders highlighted in white. Looking at the bottom of the table
on the main panel, you should see that this is region class 24 consisting of 897 pixels. (If
statistics for another region are displayed at the bottom of the table, you can select region
class 24 by entering the number “24” in the text box to the right of the “Select Pixels with
Segmentation Level 0 Region Class Label” label and pressing the “Enter” button on your
keyboard.) Now click on the “Select Next Coarser Segmentation” button. You will see
that region class 24 has grown to 1402 pixels at hierarchical level one with the addition of
more pixels from the girl’s green blouse. When you click on the “Select Next Coarser
Segmentation” button one more time you will see that region class 24 merges into region
class 25 at hierarchical level four with 4823 pixels with the addition of background pixels
to the region. Click on the “Select Next Finer Segmentation” button to display region
class 24 at hierarchical level three.

Let’s label the currently highlighted portion of the girl’s green blouse shirt by clicking on
the “Label Region” button. In the “Label Region Panel” that now appears, type “green
blouse” in the text box to the right of dark green color button towards the lower left of the
panel and then hit “Enter” on your keyboard. You will now see this region colored dark
green in the “Current Class Labels Image” panel. You can now close the “Label Region
Panel.”

We can include more of the girl’s green blouse in this region by selecting a pixel in the
dark green area on the girl’s left shoulder (to the right in the image). This time select the
region object by clicking on the button “Select Region Object at Location of the Last
Mouse Click.” If you clicked on the pixel I clicked on (at column 200 and row 220), you
should see region object 436 highlighted, which contains 853 pixels at hierarchical level
zero. Clicking on “Select Next Coarser Segmentation” you will see that region object 436
merges into region object 292 at hierarchical level one. This 1357 pixel region adds more
of the green blouse to the region at hierarchical level five. Clicking twice more on the
“Select Next Coarser Segmentation” button again adds some of the girl’s red shawl to the

RHSEG User’s Manual Version 1.46

55

region object at hierarchical level seven. Go back to hierarchical level six (which displays
the same region object as at hierarchical level five) by clicking on the “Select Next Finer
Segmentation” button. Add this region to the “green blouse” region by clicking on the
“Label Region” button, placing the cursor in the text box where you previously entered
“green blouse” and pressing the “Enter” button on your keyboard. Close the “Label
Region” panel again.

You have now exercised most of the features of HSEGViewer for labeling an image.
However, there are other features of HSEGViewer we have not visited yet. The “Initial
Segmentation Level” text box allows you to set the initial segmentation level that is
displayed (defaulted to 0) when you select a new region class or object for highlighting.
The “Refocus on Selected Region” button centers all image panels on the pixel selected
with the “Select Region Class at Location of Last Left Mouse Click” button or “Select
Region Object at Location of Last Left Mouse Click” button. The text box between the
“Select Next Finer Segmentation” and “Select Next Coarser Segmentation” buttons not
only displays the currently highlighted hierarchical segmentation level, but entering a
valid hierarchical segmentation level into this text box will jump you to that hierarchical
level.

We now come to the set of buttons under the “Display Options” label. We have already
visited the “RGB Image” and “Current Class Labels” buttons. The “Segmentation Classes
Slice” button provides a pseudo colored rendition of the region class segmentation at the
currently selected hierarchical level. Similarly, the “Segmentation Objects Slice” button
provides a pseudo colored rendition of the region object segmentation at the currently
selected hierarchical level. The “Region Mean Image” button provides a view of the
region mean image. The “Hierarchical Boundary Map” button provides a boundary map
of the image segmentation, where the darker image boundaries correspond to boundaries
that persist up to the highest hierarchical levels, while the lighter image boundaries
correspond to boundaries that disappear at lower hierarchical levels. Finally, the “Region
Class (Object) Boundary Pixel Ratio Image” displays this ratio for each region class
(object).

At the bottom of the display panels the cursor location (column, row) is displayed. The
pixel value is also displayed on the “Segmentation Slice View Image,” “Current Class
Labels Image,” and “Hierarchical Boundary Map” display panels. The pixel value on the
“Hierarchical Boundary Map” display panel corresponds to the last hierarchical level at
which the boundary still exists.

You may save whatever is displayed in any of the image display panels (except for the
reference file displays) to a PNG format file by selecting “Save PNG Image” from the
“Actions” menu. You will be prompted to specify an output file name with a file chooser.

Finally, the large table at the bottom of the HSEGViewer main panel gives the available
information about the selected region, at all hierarchical levels.

To exit the HSEGViewer program, click on the “Program Action” menu on the
HSEGViewer main panel and select “Quit” from the menu. (You could also click on the
red X in the top right corner of the panel.)

RHSEG User’s Manual Version 1.46

56

You can exit HSEGViewer and restart it where you left off by renaming the
“label_out.raw” and “ascii_out.txt” (default names) files (I often use the file names
“label_in.raw” and “ascii_in.txt”), and selecting them as the “Input Class Label Map
File” and the “Input ASCII Class Labels Name File,” respectively, in the parameter input
file.

If you have reference files (such as ground truth) in “PNG” format files, you can use
them as a reference files (Input Reference File 1 or Input Reference File 2) by specifying
them as “Input Reference” files in the parameter input panel on startup.

Notes on viewing 3-D data with HSEGViewer
HSEGViewer cannot currently render 3-D data in three dimensions. One can display and
interact only with selected 2-D planes of 3-D hierarchical segmentation results.

Assume that you have a single band 3-D image with 256 columns, 256 rows and 172
slices (this corresponds to an actual 3-D brain scan image that has been processed with
rhseg_3d). By default, HSEGViewer looks at the 256 column by 256 row 2-D image
plane at the 0th slice. You can change the slice viewed by changing the value in the text
box to the right of the label "For 3-D data, view the 2-D Representation of ". For
example, you can change from viewing the 0th slice to viewing the 86th slice.

Once you specify the desired slice for viewing, click on the "Program Actions" pull-down
menu at the top left of the panel and select "Run Program." You can now do everything
you learned in the 2-D tutorial on this 2-D plane of the 3-D image data.

To view from a different perspective you can select "Quit Program" from the "Program
Control" pull-down menu at the top left of the Viewer panel and then select "OK" on the
"Confirm Quit" panel. The "Parameter Input" panel then reappears. To the right of the
Label "For 3-D data, view the 2-D Representation of" you can select "row" or "column"
instead of "slice". For example, select "row" and then specify row index 128 (for the 2-D
rendition along the middle row). Again select "Run Program" from the "Program
Control" menu. You can now see and interact with the data and hierarchical segmentation
results from this new perspective.

	Including the Core HSEG Open Source Release, HSEGExtract, HSEGReader and HSEGViewer
	Table of Contents
	Documentation Conventions
	Additional Sources of Information
	Chapter 1: What are HSEG, RHSEG, HSEGExtract, HSEGReader and HSEGViewer?
	Overview
	What is Image Segmentation?
	What is a Segmentation Hierarchy?
	What is HSEG?
	What is RHSEG?

	Note that rnb_levels and min_nregions are user specified parameters (with default values available).
	What is HSEGExtract?
	What is HSEGReader?
	What is HSEGViewer?
	References

	Chapter 2: Installing the Programs
	Overview
	Core HSEG Open Source Release Version
	RHSEG Demonstration Version
	RHSEG Licensed Serial Version
	RHSEG Licensed Parallel Version

	TBD
	HSEGExtract, HSEGReader, and HSEGViewer
	Advice on Installing GDAL, gtkmm and pthreads

	Chapter 3: Running the Programs
	Overview
	Running RHSEG

	The parameter file consists of entries of the form:
	-parameter_name parameter_values(s)
	This parameter file may be constructed manually following the definitions provided in the on-line help, which may be obtained through the command:
	and/or by referring Chapter 4 of this User’s Manual.
	The “rhseg_run” version of RHSEG requires that the input data be a headerless binary 1-, 2-, or 3-spatial dimension image or image-like data file in band sequential format. See Chapter 4 of this User’s Manual for more details.
	The parameter file may also be constructed automatically using the “rhseg_setup” program with the command:
	Invoking this command will display a GUI through which you can provide the input parameter information. In this case, the input image data must be in one of the image data formats recognized by GDAL instead of the headerless binary data file expected ...
	“Running” RHSEG from the “rhseg_setup” program does not actually run the RHSEG algorithm, but instead creates an input parameter file for “rhseg_run” (with the default name “rhseg_run.params”). It also creates the headerless binary input data files re...
	You may also run RHSEG from a command line with a parameter file using the “rhseg” command. In contrast the “rhseg_run,” in this case the input image data must be in one of the image data formats recognized by GDAL instead of the headerless binary dat...
	Invoking “rhsegGUI” (without the parameter file name) will bring up the GUI version of RHSEG. The GUIs are exactly the same as described in the discussion of “rhseg_setup” above. In this case, though, when you request “Run RHSEG” you will actually run...
	When RHSEG is run using the “rhsegGUI” version, upon completion of the RHSEG program, the user is given the opportunity to run HSEGReader, HSEGViewer and/or display the log file by selecting buttons on a GUI.
	Again, for help on the parameter file entries, type
	To find out the version of your copy of RHSEG type
	Notes for the demonstration version:
	(i) For the demonstration version, the first time you run the “rhseg” or “rhseg_run” version of the RHSEG program, you will be prompted for your user name and Serial Key, which should have been provided to you with RHSEG_setup.exe. This information is...
	(ii) For the initial run of RHSEG, serialkey information must be entered via the command line (non-GUI) version of RHSEG, called from a DOS command window or a LINUX terminal window. Subsequent runs of RHSEG (within the demonstration period) may be ru...
	Running HSEG

	The non-gtkmm dependent version of HSEG must be run from a command line with a parameter file using the “hseg” command. For “hseg,” like “rhseg” above, the input image data must be in one of the image data formats recognized by GDAL. At a minimum you ...
	The parameter file consists of entries of the form:
	-parameter_name parameter_values(s)
	This parameter file may be constructed manually following the definitions provided in the on-line help, which may be obtained through the command:
	and/or by referring Chapter 4 of this User’s Manual.
	The “hseg” program may also be built with dependence on gtkmm. When built this way, invoking “hseg” (without the parameter file name) will bring up the GUI version of HSEG. The GUIs are exactly the same as described in the discussion of “rhseg_setup” ...
	When HSEG is run using the GUI (gtkmm dependent) version, upon completion of the HSEG program, the user is given the opportunity to run HSEGReader, HSEGViewer and/or display the log file by selecting buttons on a GUI.
	Again, for help on the parameter file entries, type
	To find out the version of your copy of RHSEG type
	HSEG will take a long time to run for all but the smallest images. However, you can investigate the behavior of HSEG on large images by using it in combination with RHSEG by first running RHSEG such that in terminates (or generates its first output) a...
	Running HSEGExtract

	The first choice brings up a parameter input GUI. This version of HSEGExtract can also be called from “RHSEG” group in “All Programs” in the “start” menu in Windows. If you like, you can create a shortcut for this program and place it on your desktop.
	hsegextract –h or hsegextract -help
	To find out the version of your copy of HSEGExtract type
	hsegextract hsegextract.params
	hsegextract
	Running HSEGReader

	hsegreader
	The first choice brings up a parameter input GUI. This version of HSEGReader can also be called from “RHSEG” group in “All Programs” in the “start” menu in Windows. If you like, you can create a shortcut for this program and place it on your desktop.
	hsegreader –h or hsegreader -help
	To find out the version of your copy of HSEGReader type
	hsegreader hsegreader.params
	hsegreader
	Running HSEGViewer

	hsegviewer
	The first choice brings up a parameter input GUI. This version of HSEGViewer can also be called from “RHSEG” group in “All Programs” in the “start” menu in Windows. If you like, you can create a shortcut for this program and place it on your desktop.
	hsegviewer –h or hsegviewer -help
	To find out the version of your copy of HSEGViewer type
	hsegviewer hsegviewer.params
	hsegviewer
	Chapter 4: Guide to HSEG/RHSEG Parameters and Parameter Settings
	Overview
	HSEG/RHSEG Program Parameters

	HISTORY: * Version 1.46 is a minor upgrade/bug fix over Version 1.45. The most significant change is the restoration of the “region of interest” capability to HSEGViewer that was lost when HSEGViewer was converted to C++ from JAVA for Version 1.32. A...
	* Version 1.45 of RHSEG brought with it some significant operational changes: The capability was added to input float format input image data, the dtype parameter definitions were changed, a complete GUI was added as an option, and a capability to in...
	* A “percent complete” tracking facility was added to both the command line and GUI versions of RHSEG with version 1.42.
	* With version 1.41, the chk_mn_std_dev and conv_mn_std_dev input parameters were added in version 1.32 were removed and the behavior of the region_std_dev parameter was changed. The optional hseg_out_nregions and hseg_out_thresholds parameters were ...
	* A option for a rudimentary GUI is provided with version 1.40. This GUI option makes it possible to make RHSEG a desktop function in Windows.
	* A large number of changes were made to the input parameters with version 1.32. Most of these changes are related to the consolidation of the output region class and region object information into the region_classes and region_objects files. In addi...
	* With version 1.31, the conv_criterion, conv_factor, gdissim_crit, and gstd_dev_crit parameters were eliminated, the rconv_critlist parameter was renamed to rthreshlist, and the gdissim parameter was added.
	* With version 1.30, the min_npixels_pct parameter was replaced with min_npixels. Also, the default values if split_pixels_factor, seam_threshold_factor and region_threshold_factor were changed and a new dissimilarity criterion (SAR Speckle Noise) was...
	* New parameter added with version 1.28: init_threshold.
	* New parameters added with version 1.20: nslices, scale, and offset (rlblmap_mask_value was removed).
	* Parameters revised with version 1.20: spclust_wght, dissim_crit, conn_type, normind, conv_criterion, and gdissim_crit. The parameter spatial_wght was renamed to be std_dev_wght.
	* New parameter added with version 1.10: ionb_levels.
	Since
	∆MSEb(Xi,Xj) =
	Guidance on HSEG/RHSEG Program Parameter Settings
	References

	Chapter 5: HSEGViewer Tutorial
	Overview

	This chapter provides a tutorial on the HSEGViewer program.
	HSEGViewer Tutorial

	hsegviewer
	hsegviewer hsegviewer.params
	Notes on viewing 3-D data with HSEGViewer

